Quantum Computing

Recent Developments

Vesselin G. Gueorguiev

Ronin Institute ♂

Institute for Advanced Physical Studies

Outline

- Key Concepts in Quantum Computing
- Possible Applications of QC
- Present Status on QC Resources
- Recent Developments and Future Directions
- Conclusion
- Q&A and Discussion

Go to www.menti.com and use the code 7427 2778

Homework

What QC resources do you know about?

Key Concepts in Quantum Computing

LinkedIn SlideShare: 17 Nov 2014 – "Quantum Computing: Welcome to the Future" by Vern Brownell CEO

Where did this idea come from?

A Recent History

1982 Richard Feynman envisions quantum computing

1994

Peter Shor develops algorithm that could be used for quantum codebreaking

2000

Eddie Farhi at MIT develops idea for adiabatic quantum computing

1985
David Deutsch describes universal quantum computer

1999
D-Wave Systems
founded by Geordie
Rose

2010

D-Wave One: first commercial quantum computer, 128 qubits

© 2014 D-Wave Systems Inc. All Rights Reserved

5

For more details see Wikipedia: Timeline of quantum computing and communicationing

Key Concepts in Quantum Computing

Key Quantum Effects

Entanglement

LinkedIn SlideShare: 17 Nov 2014 – "Quantum Computing: Welcome to the Future" by Vern Brownell CEO

Key Concepts in QC

What special about **Quantum computer** 0 The Q-bit represented $\frac{|0\rangle + |1\rangle}{\sqrt{2}}$ as a Bloch sphere Qubit Classical Bit Classical Bit $v_0|0 angle + v_1|1 angle ightarrow$ One out of 2N possible permutations Either 0 or 1 $(\cos t, \sin t)$ Quantum Bit NBit 1 Bit a (0000 ··· 0)+a (1100 ··· 0)+a (1110 ··· 0) + ··· + a (1111 (10)+(01) Both 0 and 1 All of 2N possible permutations

Generators of Rotations as quantum gates:

Pauli-X gate
$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Pauli-Y gate
$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
.

Pauli-Z gate
$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

LinkedIn SlideShare: 29 Sep 2012 – "Topic: Quantum computer" By Nisarg Y Bhagavantanavar

Key Concepts in QC

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Quantum Gates-Hadamard

Simplest gate involves one qubit and is called a Hadamard Gate (also known as a square root of NOT gate.) Used to put qubits into superposition.

Note: Two Hadamard gates used in succession can be used as a NOT gate.

$$|0>=[1, 0]^T$$

$$|1\rangle = [0,1]^{\mathsf{T}}$$
$$|0\rangle \longleftrightarrow |1\rangle$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$X = (\sqrt{NOT})^2$$

$$\sqrt{X} = \sqrt{NOT}$$
:

$$=rac{1}{2}egin{bmatrix}1+i&1-i\1-i&1+i\end{bmatrix}$$

LinkedIn SlideShare: 21 Apr 2014 – "Quantum Computing" by Rohit Mishra & Ankit Agarwal

Possible Applications of QC

- Quantum Communications
 - Quantum Key Distribution (BB84 Bennett & Brassard 1984)
 - Cryptography Prime Number Factorization (Peter Shor 1994)
 - State Teleportation (Charles Bennett et al 1993)
- Artificial Intelligence
 - Large Data processing (Lov Grover search 1997)
 - Optimization problems ...
 - Pattern Recognition ...
- Variety of Art form expressions ...
 - Quantum Music Composer
 - Wearable Gadgets
- ???

Quantum Teleportation

Advantage of the Shor's Algorithm

Quantum Algorithm: Shor's Algorithm

In 2001, Shor's algorithm was demonstrated by a group at IBM, who factored 15 into 3×5 , using an NMR implementation of a quantum computer with 7 qubits

with a classical computer

# bits	1024	2048	4096
factoring in 2006	10 ⁵ years	5x10 ¹⁵ years	3x10 ²⁹ years
factoring in 2024	38 years	10 ¹² years	7x10 ²⁵ years
factoring in 2042	3 days	3x10 ⁸ years	2x10 ²² years
_	·		

with potential quantum computer

# bits	1024	2048	4096
# qubits	5124	10244	20484
# gates	3x10 ⁹	2X10 ¹¹	$X10^{12}$
factoring time	4.5 min	36 min	4.8 hours

Slide by Meghaditya Roy Chaudhury on "Quantum Computing" at Jadavpur University

See also R. J. Hughes, LA-UR-97-4986

Possible Applications of QC

What is the future of quantum computing?

© 2014 D-Wave Systems Inc. All Rights Reserved

Present Status on QC Resources

- Quantum Computing Hardware
 - D-Wave (128/512)[Q5000]
 - IBM (50)[127]
 - Intel (49)
 - Google (72)
 - Rigetti (19)[32]
 - AliBaba (11)

- Quantum Computing Software
 - D-Wave
 - IBM Q-Experience and QISKit
 - Rigetti Forest
 - Microsoft #Q, Google CirQ, QC Ware
 - Amazon Braket

rigetti

D-Wave 2000-qubit processor

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

IBM 50-Qubit Processor

'Tangle Lake,' Intel's 49-Qubit Processor

26 spin q-bits

https://newsroom.intel.com/news/future-quantum-computing-counted-qubits/

Problems and Future Directions

$$|\psi\rangle = \sum_{n} c_n |n\rangle \longrightarrow |n_i\rangle$$

- De-coherence
- **Error Correction**
- **Output Measurement**

Hamming - Correctable single bit error

Finding "the right problems" for a quantum computer

D-Wave's \$15 million quantum computer runs a staggering 2,000 qubits

D-Wave's 2000Q quantum computer will ship to select customers but could ultimately be available to others via the cloud

U.S. Correspondent, IDG News Service

JAN 24, 2017 6:14 AM PT

Recent Developments and Future Directions

D-Wave Previews Next-Generation Quantum Computing Platform (5000 qubits)

Current Chimera[™] topology: each qubit is connected to **six other** qubits.

Pegasus topology: each qubit is connected to 15 other qubits!

Google's Sycamore Qubits Geometry!

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular array of 54 qubits (grey), each connected to its four nearest neighbours with couplers (blue). The inoperable qubit is outlined. b, Photograph of the Sycamore chip.

Future Directions Are liquid-crystals part of the future QCs?

- 1 General characteristics
- 2 History
 - 2.1 1880s-1960s
 - 2.2 1970s
 - 2.3 1980s
 - 2.4 1990s
 - 2.5 2000s-2010s
- 3 Illumination
- 4 Connection to other circuits
- 5 Passive and active-matrix
- 6 Active-matrix technologies

Future Directions First 3D quantum liquid crystal!

Quantum Liquid Crystals Could Speed Up Computers

Fri, 04/21/2017 - 9:57am by Kenny Walter, Science Reporter - W @RandDMagazine

These images show light patterns generated by a rhenium-based crystal using a laser method called optical second-harmonic rotational anisotropy. At left, the pattern comes from the atomic lattice of the crystal. At right, the crystal has become a 3-D quantum liquid crystal, showing a drastic departure from the pattern due to the atomic lattice alone. Credit: Hsieh Lab/ Caltech

The electrons have different magnetic properties, depending on whether they flow forward or backward on a given axis!

Future Directions

What about the Quantum Dots?

Cadmium sulfide quantum

lead sulfide (selenide)

QDs can contain as few as 100 to 100,000 atoms diameter of ≈10 to 50 atoms (2 to 10 nanometers) nearly 3 million quantum dots could be lined up end to end and fit within the width of a human thumb.

with a UV light. Different sized quantum dots emit different color light due to quantum confinement.

- 1 Production
 - 1.1 Colloidal synthesis
 - 1.2 Plasma synthesis
 - 1.3 Fabrication
 - 1.4 Viral assembly
 - 1.5 Electrochemical assembly
 - 1.6 Bulk-manufacture
 - 1.7 Heavy-metal-free quantum dots
- 2 Health and safety
- 3 Optical properties
- 4 Potential applications
 - 4.1 Biology
 - 4.2 Photovoltaic devices

https://en.wikipedia.org/wiki/Quantum_do

t

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

Future Directions

Quantum dots as liquid crystal dopants!

From the journal:

Journal of Materials Chemistry

Quantum dots as liquid crystal dopants

Javad Mirzaei, a Mitya Reznikov and Torsten Hegmann**

J. Mater. Chem., 2012,22, 22350-22365; https://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm33274d#!divAbstract

Future Directions

Are diamonds only for jewelry?

https://www.eurekalert.org/pub_releases/2019-06/ynu-

NEWS RELEASE 28-JUN-2019

Researchers teleport information within a diamond

YOKOHAMA NATIONAL UNIVERSITY

The future internet could be built of diamonds

Researchers at Princeton engineer a new type of diamond with silicon and boron that solves past issues with quantum data storage and retrieval.

ROBBY BERMAN 10 July, 2018

Conclusion

- QC will be complementary to classical computing!
- It will be few more years until becoming of age!
- The QC territory is a wide-open field of opportunities:
 - Hardware development
 - Software development
 - Future QC based services and applications
- ???

Homework Assignments and Open Discussion

Review and start reading 1804.10068:

- Self-assessment using self-tests/quizzes from QWorld on the IAPS
 <u>qc-page https://qc.iaps.institute/</u>
- <u>Linear Algebra Review</u> and References by Zico Kolter (updated by Chuong Do) https://cs229.stanford.edu/section/cs229-linalg.pdf
- → Quantum machine learning for data scientists by Dawid Kopczyk https://arxiv.org/abs/1804.10068

Some more questions and topics from Vlado for his lectures next week!