Lecture 21

Grover search algorithm (extended with Qiskit examples)

of the course "Fundamentals of Quantum Computing" $(by \overset{\text{\tiny def}}{\bowtie} and \text{ Quanterall})$

Stoyan Mishev

INSTITUTE for ADVANCED PHYSICAL STUDIES

Plan 2

Essence

Words as point in Hilbert space

Steps of the Grover search algorithm

Grover algorithm on a two-qubit system

Qiskit notebook

Lov Kumar Grover

L. Grover, Phys. Rev. Lett. 79(2), 325 (1997)

Completes a search in $\sim \sqrt{N}$ steps (with 50% probability)

Lov Kumar Grover

L. Grover, Phys. Rev. Lett. 79(2), 325 (1997) Completes a search in $\sim \sqrt{N}$ steps (with 50% probability) as opposed to the classical $\sim N/2$ steps.

Lov Kumar Grover

L. Grover, Phys. Rev. Lett. 79(2), 325 (1997)

Completes a search in $\sim \sqrt{N}$ steps (with 50% probability) as opposed to the classical $\sim N/2$ steps.

The objects (haystack) must be represented as points in a Hilber space. The vectors of the objects which we try to find span a subspace in this space.

Lov Kumar Grover

L. Grover, Phys. Rev. Lett. 79(2), 325 (1997)

Completes a search in $\sim \sqrt{N}$ steps (with 50% probability) as opposed to the classical $\sim N/2$ steps.

The objects (haystack) must be represented as points in a Hilber space. The vectors of the objects which we try to find span a subspace in this space. The Grover algorithm constructs operators that transform a given initial state into a state which has a maximal component in the subspace of desired objects (amplitude amplification).

Definition 6.22 Let S denote the set of objects we are searching for, and let $m \ge 1$ be the cardinality of this set. The set S is called solution set, and we call its elements solutions. For the algorithm to search an $x \in S \subset \{0, ..., N-1\}$

1}, where $N=2^n$, we define the input and output register as $\mathbb{H}^{I/O}=\mathbb{H}^{\otimes n}$. Furthermore, we denote the set of objects that are not a solution by

 $m \ge 1$ be the cardinality of this set. The set S is called solution set, and we call its elements solutions. For the algorithm to search an $x \in S \subset \{0, ..., N-1\}$ 1}, where $N=2^n$, we define the input and output register as $\mathbb{H}^{1/O}=\mathbb{H}^{\otimes n}$.

Definition 6.22 Let S denote the set of objects we are searching for, and let

Furthermore, we denote the set of objects that are not a solution by
$$S^{\perp} := \{0, \dots N-1\} \setminus S$$

 $\mathbb{H}_{\mathbf{S}^{\perp}} := \operatorname{Span} \{ |x\rangle \mid x \in \mathbf{S}^{\perp} \} \subset \mathbb{H}^{I/0}$

and define the subspaces
$$\mathbb{H}_{-} := S$$

$$\mathbb{H}_{\mathrm{S}} := \operatorname{\mathsf{Span}} \left\{ \ket{x} \middle| x \in \mathrm{S}
ight\} \subset \mathbb{H}^{I/0}$$

m > 1 be the cardinality of this set. The set S is called solution set, and we call its elements solutions. For the algorithm to search an $x \in S \subset \{0, ..., N - 1\}$ 1}, where $N = 2^n$, we define the input and output register as $\mathbb{H}^{l/O} = \mathbb{H}^{\otimes n}$. Furthermore, we denote the set of objects that are not a solution by

Definition 6.22 Let S denote the set of objects we are searching for, and let

 $S^{\perp} := \{0, ..., N-1\} \setminus S$

and define the subspaces
$$\mathbb{H}_{\mathbf{S}} := \operatorname{Span} \left\{ |x\rangle \, \middle| \, x \in \mathbf{S} \right\} \subset \mathbb{H}^{I/0}$$

$$\mathbb{H}_{\mathbf{S}^{\perp}} := \operatorname{Span} \left\{ |x\rangle \, \middle| \, x \in \mathbf{S}^{\perp} \right\} \subset \mathbb{H}^{I/0}$$

on $\mathbb{H}^{I/O}$ as well as the vectors

$$P_{
m S} :=$$

$$\begin{split} P_{\mathrm{S}} &:= \sum_{x \in \mathrm{S}} |x\rangle \langle x| \\ P_{\mathrm{S}^{\perp}} &:= \sum_{x \in \mathrm{S}} |x\rangle \langle x| = \mathbf{1}^{\otimes n} - P_{\mathrm{S}} \end{split}$$

 $P_{\mathrm{S}} := \sum_{x \in \mathrm{S}} |x\rangle \langle x|$

$$\}\subset\mathbb{H}^{I/0}$$

 $m \ge 1$ be the cardinality of this set. The set S is called solution set, and we call its elements solutions. For the algorithm to search an $x \in S \subset \{0, ..., N - 1\}$

1}, where $N = 2^n$, we define the input and output register as $\mathbb{H}^{I/O} = \mathbb{H}^{\otimes n}$. Furthermore, we denote the set of objects that are not a solution by

Definition 6.22 Let S denote the set of objects we are searching for, and let

$$\mathbf{S}^{\perp} := \{0, \dots N-1\} \smallsetminus \mathbf{S}$$
 and define the subspaces

$$\mathbb{H}_{\mathbf{S}} := \operatorname{Span} \left\{ |x\rangle \, \middle| \, x \in \mathbf{S} \right\} \subset \mathbb{H}^{I/0}$$

$$\mathbb{H}_{\mathbf{S}^{\perp}} := \operatorname{Span} \left\{ |x\rangle \, \middle| \, x \in \mathbf{S}^{\perp} \right\} \subset \mathbb{H}^{I/0}$$

and the operators

on
$$\mathbb{H}^{I/O}$$
 as well as the vectors

$$|\varPsi_{
m S}|$$

$$|\Psi_{\rm S}\rangle := \frac{1}{\sqrt{m}} \sum_{x \in {\rm S}} |x\rangle$$

 $P_{\mathrm{S}^{\perp}} := \sum |x\rangle\langle x| = \mathbf{1}^{\otimes n} - P_{\mathrm{S}}$

 $P_{\mathbf{S}} := \sum_{x \in \mathbf{S}} |x\rangle \langle x|$

 $|\Psi_{\mathrm{S}^{\perp}}\rangle := \frac{1}{\sqrt{N-m}} \sum_{x \in \mathrm{S}^{\perp}} |x\rangle$

Every state $|\Psi\rangle \in H^{I/O}$ can be decomposed as:

$$|\Psi\rangle = \left(P_{\mathrm{S}^{\perp}} + P_{\mathrm{S}}\right)|\Psi\rangle = \sum_{x \in \mathrm{S}^{\perp}} \Psi_{x}|x\rangle + \sum_{x \in \mathrm{S}} \Psi_{x}|x\rangle$$

Remember, measuring the state $|\Psi\rangle$ means:

Definition 5.35 Let $n \in \mathbb{N}$ and for $j \in \{0, ..., n-1\}$ and $\alpha \in \{0, ..., 3\}$ (or, equivalently, $\alpha \in \{0, x, y, z\}$) define

$$\Sigma_{\alpha}^{j} := \mathbf{1}^{\otimes n-1-j} \otimes \sigma_{\alpha} \otimes \mathbf{1}^{\otimes j} \quad \in \mathrm{B}_{\mathrm{sa}}(\mathbb{H}^{\otimes n}),$$

where the σ_{α} are as in Definition 2.21. The **observation of a state in the quantum register** $\mathfrak{M}^{\otimes n}$ is defined as the measurement of all compatible observables

$$\Sigma_{z}^{j} = \mathbf{1}^{\otimes n-1-j} \otimes \sigma_{z} \otimes \mathbf{1}^{\otimes j}$$

for $j \in \{0, ..., n-1\}$ in the state of the quantum register. Such an observation is also called **read-out** or **measurement** of the register.

The goal of the algorithm to create states $|\Psi\rangle$ for which the probability to observe an $x \in S$ is maximized. This is accomplished by starting from an initial state $|\Psi_0\rangle$ and by applying suitable transformations which increase the component in H_S .

$$\mathbf{P} \left\{ \begin{array}{l} \text{Observation of } |\Psi\rangle \text{ projects} \\ \text{onto a state } |x\rangle \text{ with } x \in \mathbf{S} \end{array} \right\} \underbrace{=_{(2.62)}}_{(2.62)} ||P_{\mathbf{S}}|\Psi\rangle||^2 \underbrace{=_{(6.137)}}_{(6.137)} \left| \left| \sum_{x \in \mathbf{S}} \Psi_x |x\rangle \right| \right|^2 \\ \underbrace{=_{(2.14)}}_{x \in \mathbf{S}} |\Psi_x|^2 .$$

$$g: \{0, \dots, N-1\} \longrightarrow \{0, 1\}$$

$$x \longmapsto g(x) := \begin{cases} 0 & \text{if } x \in S^{\perp} \\ 1 & \text{if } x \in S \end{cases}$$

$$\widehat{U}_g(|x\rangle \otimes |y\rangle) := |x\rangle \otimes |y \boxplus g(x)\rangle$$

where $|y\rangle$ belongs to an auxiliary register H^W .

Reminder
$$|a \boxplus b\rangle := \bigotimes_{j=m-1}^{0} |a_j \stackrel{2}{\oplus} b_j\rangle$$

$$u \stackrel{2}{\oplus} v := (u+v) \mod 2$$

▼ Circuit Construction of a Grover Oracle (click to expand)

If we have our classical function f(x), we can convert it to a reversible circuit of the form:

$$\begin{vmatrix} |x\rangle \\ |0\rangle \end{vmatrix} = \begin{cases} |x\rangle \\ |f(x)\rangle \end{vmatrix}$$

If we initialise the 'output' qubit in the state $|-\rangle$, the phase kickback effect turns this into a Grover oracle (similar to the workings of the Deutsch-Jozsa oracle):

$$|x\rangle$$
 $\left\{\begin{array}{c} \\ \\ \end{array}\right\} (-1)^{f(x)}|x\rangle$

We then ignore the auxiliary (|angle) qubit.

Lemma 6.24 For the oracle U_g and the state

$$|\omega_i\rangle = |\omega_f\rangle = |-\rangle := \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

in the auxiliary register \mathbb{H}^W one has for arbitrary $|\Psi\rangle \in \mathbb{H}^{I/O}$ $\widehat{U}_{\sigma}(|\Psi\rangle \otimes |-\rangle) = (R_{S^{\perp}}|\Psi\rangle) \otimes |-\rangle$,

where

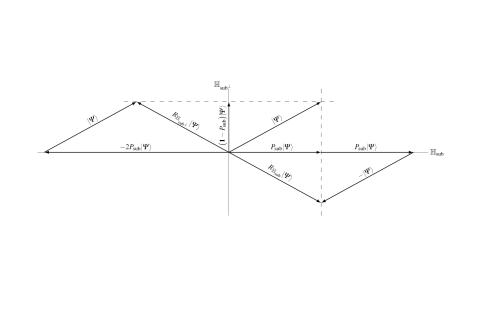
$$egin{aligned} R_{\mathrm{S}^{\perp}} |\Psi
angle &= \sum_{x \in \mathrm{S}^{\perp}} \Psi_{x} |x
angle - \sum_{x \in \mathrm{S}} \Psi_{x} |x
angle \ &= (\mathbf{1}^{\otimes n} - 2P_{\mathrm{S}}) |\Psi
angle \,. \end{aligned}$$

 $R_{S\perp}$ can be viewed as reflection about $H_{S\perp}$:

Definition 6.25 Let \mathbb{H}_{sub} be a subspace of the HILBERT space \mathbb{H} , and let P_{sub} be the projection onto this subspace. The **reflection about the subspace** \mathbb{H}_{sub} is defined as the operator

$$R_{\rm sub} := 2P_{\rm sub} - 1. (6.147)$$

If the subspace is one-dimensional and spanned by a $|\Psi\rangle \in \mathbb{H}$, we simply write R_{Ψ} and call this a reflection about $|\Psi\rangle$.



Definition 6.26 Let S be the solution set with cardinality m > 1. For the algorithm to search for an $x \in S \subset \{0, ..., N-1\}$, where $N = 2^n$, we define the initial state in the input/output register as

$$|\Psi_0\rangle := \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \in \mathbb{H}^{I/O}.$$
 (6.148)

(6.149)

(6.150)

(6.151)

Moreover, we define the angle

$$\theta_0 := \arcsin\left(\sqrt{\frac{m}{N}}\right) \in \left[0, \frac{\pi}{2}\right],$$

$$\theta_0 := \arcsin$$

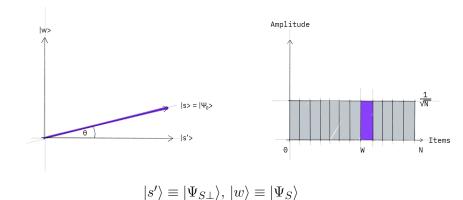
$$\theta_0 := \arcsin\left(\sqrt{\frac{N}{N}}\right) \in \mathbb{R}$$
 and with the help of $|\Psi_0\rangle$ we define the operator

on $\mathbb{H}^{I/O}$ as well as the initial state in the composite system

 $|\widehat{\Psi}_0\rangle := |\Psi_0\rangle \otimes |-\rangle \in \mathbb{H}^{I/O} \otimes \mathbb{H}^W$.

 $|\Psi_0\rangle = \cos\theta_0 |\Psi_{\rm S\perp}\rangle + \sin\theta_0 |\Psi_{\rm S}\rangle$

 $R_{\Psi_0} = 2|\Psi_0\rangle\langle\Psi_0| - \mathbf{1}^{\otimes n}$



Definition 6.27 The **GROVER iteration** is defined as the operator

$$\widehat{G}:=\left(R_{\mathcal{V}_0}\otimes \mathbf{1}
ight)\widehat{U}_g$$

on $\mathbb{H}^{I/O} \otimes \mathbb{H}^W$.

As we will now show, the GROVER iteration G transforms separable states in $\mathbb{H}^{I/O}\otimes\mathbb{H}^W$ of the form $|\widehat{\Psi}_j\rangle=|\Psi_j\rangle\otimes|-\rangle$ to separable states $|\widehat{\Psi}_{j+1}\rangle=|\Psi_{j+1}\rangle\otimes|-\rangle$ of a similar form. We will see that in the input/output register $\mathbb{H}^{I/O}$ an application of \widehat{G} can then be viewed as a rotation of $2\theta_0$ in $\mathbb{H}^{I/O}$ in the direction of $|\Psi_{\mathbb{S}}\rangle$.

Proposition 6.28 *For* $j \in \mathbb{N}_0$ *let*

$$|\widehat{\Psi}_{j}\rangle := \widehat{G}^{j}|\widehat{\Psi}_{0}\rangle$$
.

Then we have for all $j \in \mathbb{N}_0$

$$|\widehat{\Psi}_{j}\rangle = |\Psi_{j}\rangle \otimes |-\rangle$$

with $|\Psi_j\rangle \in \mathbb{H}^{I/O}$ and

$$|\Psi_{j}\rangle = \cos\theta_{j}|\Psi_{\mathrm{S}^{\perp}}\rangle + \sin\theta_{j}|\Psi_{\mathrm{S}}\rangle,$$

where

$$\theta_j = (2j+1)\theta_0.$$

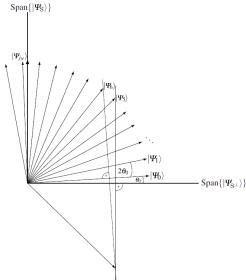
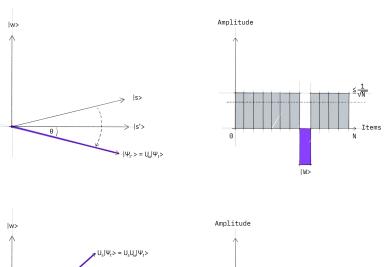
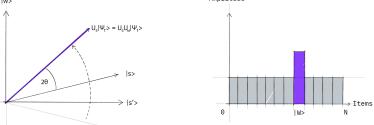


Fig. 6.6 Geometry of the GROVER iteration in the input/output register with $m=5, N=2^{10}$ and $j_N=11$. In the two-dimensional subspace $\operatorname{Span}\{|\Psi_{\mathbb{S}^\perp}\rangle, |\Psi_{\mathbb{S}}\rangle\}$ the initial state $|\Psi_0\rangle$ is rotated towards $|\Psi_{\mathbb{S}}\rangle$. The illustrated transition from $|\Psi_{\mathbb{S}}\rangle$ to $|\Psi_0\rangle$ shows that \widehat{G} in the sub-system I/O first performs a reflection about $|\Psi_{\mathbb{S}^\perp}\rangle$ and then a reflection about $|\Psi_0\rangle$. The vector immediately to the right of $|\Psi_J\rangle$ is $|\Psi_{\mathbb{S}}\rangle$ and is a state in the subspace $\mathbb{H}_{\mathbb{S}}$ of the solution set. We can see that $|\Psi_{JN}\rangle$ comes close to that





$$\mathbf{P}\left\{\begin{array}{l} \text{Observation of } |\Psi_j\rangle \text{ projects} \\ \text{onto a state } |x\rangle \text{ with } x \in \mathbf{S} \end{array}\right\} = \left|\left|P_{\mathbf{S}}|\Psi_j\rangle\right|\right|^2 \underbrace{=}_{\substack{(6.137), (6.138), \\ (6.154)}} \sin^2\theta_{\mathbf{S}}$$

Lemma 6.29 Let S be the solution set with cardinality $m \ge 1$, and let $N = 2^n$

be the number of objects in which we search for solutions. If we apply the GROVER iteration
$$\hat{G}$$

$$i_N := \left| \begin{array}{c} \pi \\ \end{array} \right|$$
(6.158)

 $j_N := \left| \frac{\pi}{4 \arcsin\left(\sqrt{\frac{m}{N}}\right)} \right|$ (6.158)

times to $|\widehat{\Psi_0}\rangle$ and observe the state $|\Psi_{j_N}\rangle$ in the input/output register, then the probability to observe in the sub-system $\mathbb{H}^{I/O}$ a state $|x\rangle$ with $x \in S$ satisfies

probability to observe in the sub-system
$$\mathbb{H}^{r/s}$$
 a state $|x\rangle$ with $x \in S$ satisfies
$$\mathbf{P} \left\{ \begin{array}{l} Observation \ of \ |\Psi_j\rangle \ projects \\ onto \ a \ state \ |x\rangle \ with \ x \in S \end{array} \right\} \ge 1 - \frac{m}{N}. \tag{6.159}$$

Steps of the Grover search algorithm

Input: A set $\{0, ..., N-1\}$ of $N = 2^n$ objects that contains a subset S of $m \ge 1$ objects to be searched for and an oracle-function $g : \{0, ..., N-1\} \rightarrow$

 $\{0,1\}$ that takes the value 1 in S and the value 0 elsewhere

Step 1: In $\mathbb{H}^{l/O} \otimes \mathbb{H}^W = \mathbb{H}^{\otimes n} \otimes \mathbb{H}$ prepare the composite system in the state $|\widehat{\Psi}_0\rangle = |\Psi_0\rangle \otimes |-\rangle$ with

$$|\Psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle.$$

The number of computational steps required for Step 1 scales for $N \to \infty$ with

$$S_{\text{GROVER1}}(N) \in O(1)$$

Steps of the Grover search algorithm

Input: A set $\{0,...,N-1\}$ of $N=2^n$ objects that contains a subset S of $m \ge 1$ objects to be searched for and an oracle-function $g:\{0,...,N-1\}$ \to

 $\{0,1\}$ that takes the value 1 in S and the value 0 elsewhere

Step 1: In $\mathbb{H}^{1/O} \otimes \mathbb{H}^W = \mathbb{H}^{\otimes n} \otimes \mathbb{H}$ prepare the composite system in the state $|\widehat{\mathbf{Y}}_0\rangle = |\mathbf{Y}_0\rangle \otimes |-\rangle$ with

$$|\Psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle.$$

The number of computational steps required for Step 1 scales for $N \to \infty$ with

$$S_{\text{GROVER1}}(N) \in O(1)$$

Step 2: With $\theta_0 = \arcsin\left(\sqrt{\frac{m}{N}}\right)$ apply the transform $\widehat{G} = (R_{\Psi_0} \otimes \mathbf{1})\widehat{U}_g$

$$j_N = \left| \frac{\pi}{4\theta_0} \right|$$

times to $|\widehat{\Psi}_0\rangle$ in order to transform the composite system to the state

$$|\widehat{\Psi}_{i_N}\rangle = \widehat{G}^{j_N}|\widehat{\Psi}_0\rangle$$
 .

The number of computational steps required for Step 2 scales for $N \rightarrow \infty$ with

$$S_{\text{GROVER2}}(N) \in O\left(\sqrt{\frac{N}{m}}\right)$$

Step 3: Observe the sub-system $\mathbb{H}^{I/O}$ and infer from the observed state $|x\rangle$ the value $x \in \{0, \dots, N-1\}$. The number of computational steps required for Step 3 scales for $N \to \infty$ with

$$S_{\text{GROVER3}}(N) \in O(1)$$

Step 3: Observe the sub-system $\mathbb{H}^{I/O}$ and infer from the observed state $|x\rangle$ the value $x \in \{0, \dots, N-1\}$. The number of computational steps required for Step 3 scales for $N \to \infty$ with

for Step 3 scales for
$$N \to \infty$$
 with $S_{\text{GROVER3}}(N) \in O(1)$

Step 4: By evaluating g(x), check if $x \in S$. The number of computational steps required for Step 4 scales for $N \to \infty$ with

Observe the sub-system $\mathbb{H}^{I/O}$ and infer from the observed state $|x\rangle$ the Step 3: value $x \in \{0, \dots, N-1\}$. The number of computational steps required for Step 3 scales for $N \rightarrow \infty$ with

for Step 3 scales for
$$N \to \infty$$
 with $S_{\text{GROVER3}}(N) \in O(1)$

Output: A solution $x \in S$ with probability no less than $1 - \frac{m}{N}$

Step 4: By evaluating g(x), check if $x \in S$. The number of computational steps

required for Step 4 scales for $N \rightarrow \infty$ with

Grover algorithm on a two-qubit system

in this case Eq. 6.149 becomes

$$\theta_0 = \arcsin(\sqrt{1/4}) = \pi/6$$

 j_N for the equation 6.158 is

$$j_N = \left\lceil \frac{\pi}{4\arcsin(\sqrt{1/4})} \right\rceil = 1$$

Then the Grover transformation $G^{j_N} \equiv G^1$ yields $\theta_{j_N} = (2j_N+1)\theta_0 = \pi/2$, i.e. $G^{j_N}|\Psi_0\rangle = \cos\theta_{j_N}|\Psi_{S_\perp}\rangle + \sin\theta_{j_N}|\Psi_S\rangle \equiv |\Psi_S\rangle$ For the case when $S \equiv |11\rangle$ see the notebook linked in the following slide.

Qiskit notebook

https://qiskit.org/textbook/ch-algorithms/grover.html

NEXT LECTURE

NOVEMBER 25, 2022

THANK YOU FOR YOUR ATTENTION!

БЛАГОДАРЯ ЗА ВНИМАНИЕТО!