Lecture 24

A Quantum Algorithm for Breaking
Digital Signatures

of the course “Fundamentals of Quantum Computing”
(by 2 and auanteriaL)

Stoyan Mishev, Vesselin Gueorguiev and Vladimir Gerdjikov

ﬁ? INSTITUTE for ADVANCED @, v
& PHYSICAL STUDIES U BULGARIAN

January 13, 2022

https://indico.iaps.institute/e/qc-fundamentals
http://iaps.institute
https://quanterall.com

Plan

DSA protocol

Hashing

Elliptic functions

Public Key and Signature Generation, Verification

DSA protocol
——

Digital Signature Algorithm (DSA) Protocol

Signer Public knows

algorithm parameters A
verification statement v

chooses a private key k

creates a public verification key

by

computingaV =V (k,A)

and publishing it verification key V

signs document by

taking document d, document d

computing a signature s(d, A)

and publishing it signature s
and can verify by
checking the verification statement v(s,d, V, A) = TRUE?

Hashing
—

Example 6.19 An example of a hash function provided by the NSA is the Secure
Hashing Algorithm SHA256 which converts any ASCII into a 64 digit hexadecimal
string. As an example consider the following text.

The SHA256 hash output of the text in this line in hexadecimal form displayed
across two lines is:

A3C431026DDD514C6D0OCTESEB253D424
B6A4AF20ECO00A8CACBEREST239BBB848

Such a 64 digit hexadecimal string can be interpreted as a 256-bit natural number d,
which in our example would be (given in binary format first)

Hashing
—

d
=(10100011110001000011000100000010011011011101110101010000000

000
000
000
00000000000000000000),

=7.407363459482995 - - - x 1070 < 2236

Elliptic functions

—

A widely used version of such a DSA is based on the difficulty to find discrete
logarithms for elements of elliptic curves (ECDSA). ECDSAs are usually based on
elliptic curves E(F}) for which p is a large prime. For a prime p the elliptic curve
E(Fp) over the finite field F}, = Z/pZ together with the addition + g given in
Theorem F.58 forms a finite abelian group

Elliptic functions

—

A widely used version of such a DSA is based on the difficulty to find discrete
logarithms for elements of elliptic curves (ECDSA). ECDSAs are usually based on
elliptic curves E(F}) for which p is a large prime. For a prime p the elliptic curve
E(Fp) over the finite field F}, = Z/pZ together with the addition + g given in
Theorem F.58 forms a finite abelian group

ECDSA Parameters (p,A,B,P,q) in the Public Domain

1. A prime p specifying the finite field I,
2. Two elements A, B € I, specifying the WEIERSTRASS equation

y2 =X +Ax+B

of the elliptic curve E(F),). This is an equation in the finite field IF,,. The under-
lying set of I, consists of cosets in Z/pZ = Z,. From Lemma E.5 and Exam-
ple F.19 we know that any such coset (or equivalently element in Zp) can be
uniquely identified with a number in {0, ..., p — 1}. Hence, we consider A and B
and the components x and y of elements P = (x,y) € E(F,) \ {Og} as elements
of the set {0,...,p—1}

3. An element
P=(xp,yp) € E(Fp)~{0g} CF), xF,,

which is often called the base point of the ECDSA

Elliptic functions

—

4. The element P is chosen such that it has prime order, that is,
g=ord(P):=min{n e N|nP=0g € E(F,)}

is a publicly known prime

Public Key and Signature Generation, Verification

ECDSA Public Key Generation

1. Select a private key

2. Compute the verification key
V=kP€E(F,)~{0g}.

Note that V # O since k < ¢, and ¢ is the smallest number such that gP = Og
3. Publish the verification key V € E(F,) \ {Og}

Public Key and Signature Generation, Verification

ECDSA Signature Generation

1. Select a natural number

2. Compute
aP = (qu-,)’uP) € E(Fp) N {OE} R

where, as above, we are guaranteed aP # O since a < ¢, and we consider x,p €
IF, to be represented by a number in {0,...,p— 1}
3. Compute
s1 =xgpmodg € {0,...,q— 1}

Public Key and Signature Generation, Verification 10

4. It s; =0, go back to Step 1 of the signature generation and select a new a €

{1,...,q—1}.

If 51 # 0, calculate the multiplicative inverse of @ modulo ¢

d=a 'modge{l,....q—1}

defined in Definition D.8, that is, the number @ such that @ mod ¢ = 1. Note that
since a € {0,..., q— 1} and ¢ is a prime, we always have gcd(a,q) = 1 and the
multiplicative inverse exists.

With @ compute

52 =((d+ks;)a)modg € {0,...,qg—1}

5. If 5o =0, go back to Step 1 of the signature generation and select a new a €

6. Publish the signature (s7,57)

Public Key and Signature Generation, Verification 11

ECDSA Verification

1. Compute
5 =5, ' modq
uy = ds> mod g

upy = s15 mod g

and with these calculate
(x,y) =uiP+uV

2. Check if)
xmodg = s

is true. If it is, then (sy,52) constitutes a valid signature of the document d. Oth-
erwise, it does not

Public Key and Signature Generation, Verification 12

Elliptic Curve Digital Signature (ECDSA) Protocol
Signer Public knows
algorithm parameters A:
large prime p
elliptic curve E(]Fp)
public point P € E(Fp) ~. {Og }
with a large prime order ¢

creates key by
choosing a secret signing key k € N
with | <k <gq.
computing the verification key V = kP
and publishing it verification key V
signs document by
taking document d and a random a € N with a < ¢, document d
computing
aP € E(Fp) ~{0g}
S1 = Xap mod q
=((d+ ss1)(a" mod ¢)) modg
and publishing the signature (s1.s7) signature (s1,52)
and verifies by
computing
) = (d(s;l modg)) modg
uz = (s (S; mod q))modq
(x.v)=uiP+punV € E(F,)~ {0}

Public Key and Signature Generation, Verification 13

In Definition 6.17 we defined for any V, P € E(IF,,) such that V = kP
k =dlogp(V)

as the discrete logarithm in E(F,) of V to base P. The security of ECDSA depends
on the fact that it is very hard to calculate the discrete logarithm for this group.

Public Key and Signature Generation, Verification

Example 6.21 Bitcoins use the secp256k1 ECDSA [93] protocol with the WEIER-
STRASS equation defined by A = 0 and B =7, that is,

V=x 47,

the prime
p=2%0_22_ 29 28 57 20 o 4 (6.136)

and the public point P = (xp,yp) given by

xp = 550662630222773436695787188951685343262506034537775941755001
87360389116729240

yp = 326705100207588169780830851305070431844712733806592432759389
04335757337482424.

The best known classical method to calculate k = dlogp(V') for E(F)) requires
0(\/ﬁ) computational steps and thus for the bitcoin ECDSA of the order of 0(1077)
computational steps. In contrast, a quantum computer could potentially calculate
k = dlogp (V) for E(F),) requiring only

Py o W e .y VNN 7 o o a2 e o\

14

THANK YOU FOR

YOUR ATTENTION!

BJIATOJTAPS 3A

BHUMAHMUETO!

	Plan
	DSA protocol
	Hashing
	Elliptic functions
	Public Key and Signature Generation, Verification

