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DSA protocol
——

Digital Signature Algorithm (DSA) Protocol

Signer Public knows

algorithm parameters A
verification statement v

chooses a private key k

creates a public verification key

by

computingaV =V (k,A)

and publishing it verification key V

signs document by

taking document d, document d

computing a signature s(d, A)

and publishing it signature s
and can verify by
checking the verification statement v(s,d, V, A) = TRUE?




Hashing
—

Example 6.19 An example of a hash function provided by the NSA is the Secure
Hashing Algorithm SHA256 which converts any ASCII into a 64 digit hexadecimal
string. As an example consider the following text.

The SHA256 hash output of the text in this line in hexadecimal form displayed
across two lines is:

A3C431026DDD514C6D0OCTESEB253D424
B6A4AF20ECO00A8CACBEREST239BBB848

Such a 64 digit hexadecimal string can be interpreted as a 256-bit natural number d,
which in our example would be (given in binary format first)



Hashing
—

d
=(10100011110001000011000100000010011011011101110101010000000

00000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000
00000000000000000000),

=7.407363459482995 - - - x 1070 < 2236



Elliptic functions

—

A widely used version of such a DSA is based on the difficulty to find discrete
logarithms for elements of elliptic curves (ECDSA). ECDSAs are usually based on
elliptic curves E(F}) for which p is a large prime. For a prime p the elliptic curve
E(Fp) over the finite field F}, = Z/pZ together with the addition + g given in
Theorem F.58 forms a finite abelian group



Elliptic functions

—

A widely used version of such a DSA is based on the difficulty to find discrete
logarithms for elements of elliptic curves (ECDSA). ECDSAs are usually based on
elliptic curves E(F}) for which p is a large prime. For a prime p the elliptic curve
E(Fp) over the finite field F}, = Z/pZ together with the addition + g given in
Theorem F.58 forms a finite abelian group

ECDSA Parameters (p,A,B,P,q) in the Public Domain

1. A prime p specifying the finite field I,
2. Two elements A, B € I, specifying the WEIERSTRASS equation

y2 =X +Ax+B

of the elliptic curve E(F),). This is an equation in the finite field IF,,. The under-
lying set of I, consists of cosets in Z/pZ = Z,. From Lemma E.5 and Exam-
ple F.19 we know that any such coset (or equivalently element in Zp) can be
uniquely identified with a number in {0, ..., p — 1}. Hence, we consider A and B
and the components x and y of elements P = (x,y) € E(F,) \ {Og} as elements
of the set {0,...,p—1}

3. An element
P=(xp,yp) € E(Fp)~{0g} CF), xF,,

which is often called the base point of the ECDSA



Elliptic functions

—

4. The element P is chosen such that it has prime order, that is,
g=ord(P):=min{n e N|nP=0g € E(F,)}

is a publicly known prime
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ECDSA Public Key Generation

1. Select a private key

2. Compute the verification key
V=kP€E(F,)~{0g}.

Note that V # O since k < ¢, and ¢ is the smallest number such that gP = Og
3. Publish the verification key V € E(F,) \ {Og}
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ECDSA Signature Generation

1. Select a natural number

2. Compute
aP = (qu-,)’uP) € E(Fp) N {OE} R

where, as above, we are guaranteed aP # O since a < ¢, and we consider x,p €
IF, to be represented by a number in {0,...,p— 1}
3. Compute
s1 =xgpmodg € {0,...,q— 1}
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4. It s; =0, go back to Step 1 of the signature generation and select a new a €

{1,...,q—1}.

If 51 # 0, calculate the multiplicative inverse of @ modulo ¢

d=a 'modge{l,....q—1}

defined in Definition D.8, that is, the number @ such that @ mod ¢ = 1. Note that
since a € {0,..., q— 1} and ¢ is a prime, we always have gcd(a,q) = 1 and the
multiplicative inverse exists.

With @ compute

52 =((d+ks;)a)modg € {0,...,qg—1}

5. If 5o =0, go back to Step 1 of the signature generation and select a new a €

6. Publish the signature (s7,57)
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ECDSA Verification

1. Compute
5 =5, ' modq
uy = ds> mod g

upy = s15 mod g

and with these calculate
(x,y) =uiP+uV

2. Check if )
xmodg = s

is true. If it is, then (sy,52) constitutes a valid signature of the document d. Oth-
erwise, it does not
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Elliptic Curve Digital Signature (ECDSA) Protocol
Signer Public knows
algorithm parameters A:
large prime p
elliptic curve E(]Fp)
public point P € E(Fp) ~. {Og }
with a large prime order ¢

creates key by
choosing a secret signing key k € N
with | <k <gq.
computing the verification key V = kP
and publishing it verification key V
signs document by
taking document d and a random a € N with a < ¢, document d
computing
aP € E(Fp) ~{0g}
S1 = Xap mod q
=((d+ ss1)(a" mod ¢)) modg
and publishing the signature (s1.s7) signature (s1,52)
and verifies by
computing
) = (d(s;l modg)) modg
uz = (s (S; mod q) )modq
(x.v)=uiP+punV € E(F,)~ {0}
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In Definition 6.17 we defined for any V, P € E(IF,,) such that V = kP
k =dlogp(V)

as the discrete logarithm in E(F,) of V to base P. The security of ECDSA depends
on the fact that it is very hard to calculate the discrete logarithm for this group.
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Example 6.21 Bitcoins use the secp256k1 ECDSA [93] protocol with the WEIER-
STRASS equation defined by A = 0 and B =7, that is,

V=x 47,

the prime
p=2%0_22_ 29 28 57 20 o 4 (6.136)

and the public point P = (xp,yp) given by

xp = 550662630222773436695787188951685343262506034537775941755001
87360389116729240

yp = 326705100207588169780830851305070431844712733806592432759389
04335757337482424.

The best known classical method to calculate k = dlogp(V') for E(F)) requires
0(\/ﬁ) computational steps and thus for the bitcoin ECDSA of the order of 0(1077)
computational steps. In contrast, a quantum computer could potentially calculate
k = dlogp (V) for E(F),) requiring only

Py o W e .y VNN 7 o o a2 e o\
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