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Definitions

—

- Machine learning is a “Field of study that gives computers the

ability to learn without being explicitly programmed.”
Samuel, Arthur (1959). "Some Studies in Machine Learning Using the Game of

Checkers". IBM Journal of Research and Development. 3 (3): 210-229.
d0i:10.1147/rd.33.0210
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ability to learn without being explicitly programmed.”
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- A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if
its performance at tasks in T, as measured by P, improves with

experience E.
Mitchell, T. (1997). Machine Learning. McGraw Hill. p. 2. ISBN
978-0-07-042807-2
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What the hell is this?



Supervised learning

SUPERVISED LEARNING
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Machine learning that are designed to learn by examples, i.e., it
maps the input to an output based on previous input-output
pairs.

Desired Output




Unsupervised learning. Clustering




Unsupervised learning. Generative.
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Input Raw Data Output

© BBY

— = —>

é@a T Y

Unlabeled Data

Machine learning that let the model discover and learn on their
own, i.e., it works on its own to discover pattern and
information .




Reinforcement Learning

‘—®—|4—° B |
X|O X X X|O
©) (@) (@) (@]
X|O|X X|O X|O|X
1] 1 ‘]
#1 #2 #3

In some applications, the output of the system is a sequence of
actions the learning in which machine is able to assess the
goodness of past approaches or policies and learn from past
good action sequences to be able to generate a policy.
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Machine Learning
with Scikit-Learn

CONCEPTS, TOOLS. AND TECH
TO BUILD INTELLIGENT SYSTEM

Aurélien Géron
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AI-ML-DL 12
—

Artificial Intelligence

Machine Learning

Deep Learning A subset of Al that Iy techniquethat
enables computers

to mimic human
intelligence, using
logic, if-then rules,
decision trees, and
machine learning
(includingdeep
learning)

The subset of machine learning includes abstruse
composed of algorithms that permit statistical techniques
software to train itself to perform tasks, that enable machines
like speech and image recognition, by to improve at tasks
exposing multilayered neural networks to with experience. The
vast amounts of data. category includes
deep learning




ML-DL
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Frameworks

—

Favourite machine learning frameworks

Scikit-learn
TensorFlow
Keras
RandomForest
Xgboost

PyTorch

LightGBM
None

Caret

Fast.ai

Spark MLib

Other

o

2500 5000
count

[ Bachelor's degree B Master's degree
ualification B Doctoral degree I No formal education past high school
I 1 prefer not to answer || Professional degree

7500

I Some college/university study without earning a

(based on data from Kaggle survey 2019)
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Frameworks 11

—
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Machine Learning using Quantum Computers



https://qiskit.org/learn/summer-school/quantum-computing-and-quantum-learning-2021/
https://learn.qiskit.org/course/machine-learning/introduction

Machine Learning using Quantum Computers

2021 Qiskit Global Summer School on Quantum Machine Learning
Kernel methods
Quantum Machine Learning course (IBM)
Kernel methods, Generative networks
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Machine Learning using Quantum Computers

2021 Qiskit Global Summer School on Quantum Machine Learning
Kernel methods
Quantum Machine Learning course (IBM)
Kernel methods, Generative networks
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2021 Qiskit Global Summer School on Quantum Machine Learning
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Quantum Machine Learning course (IBM)
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Quantum
Machine Learning:

Machine

Learnin
carning An Applied

Approach

with Quantum
Computers

Second Edition sty

e
kernel methods lin. regr., k-means, QNN
Vedran Dunjko, Jacob M. Taylor and Hans J. Briegel, Quantum-Enhanced

Machine Learning, Physical Review Letters 117 (13), 130501 (2016)
doi:10.1103/PhysRevLett.117.130501 arXiv:1610.08251
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Building a quantum
classitier

Amira Abbas

IBM Quantum, University of KwaZulu-Natal
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Hilbert space
is a big place!

- Carlton Caves

With just 275 qubits,
we can represent more
states than the
number of atoms in
the observable
universe




Quantum machine learning & Qiskit

Data generating system

o CQ

—

C - classical, Q — quantum

Compute gradients:
9C(f (Xerain:8).3)
e

Data processing device

Image credit: Maria Schuld and Francesco Petruccione. Supervised learning with
quantum computers. Vol. 17. Springer, 2018.
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Noisy, error-prone, S Qiskit
small devices

What can we do now?
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NoISE"



Variational
models
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Variational models & Qiskit

[ Parameterized quantum circuit | &—
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Variational circuit as a classifier Skt



Variational circuit as a classifier Skt

Task: Train a quantum circuit on labelled samples in order to predict
labels for new data

Step 1: Encode the classical data into a quantum state 2%
Step 2: Apply a parameterized model
Step 3: Measure the circuit to extract labels

Step 4: Use optimization techniques (like gradient descent) to update
model parameters
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Applying a variational model & Qiskit




Applying a variational mo

Low expressibility

High expressibility

Idle circuit
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Circuit A

Arbitrary unitary
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Sim et al. "Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms." Advanced Quantum Technologies 2.12 (2019): 1900070.
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Applying a variational model & Qiskit

Gireuis Gt 7
P 578s
o, ) {n}l=

Hop b o)
b (re} (e} )4
OO T D

Circuit6 " Cireuit 8
DR
o e e g
=} & e eme o o )
o SN B ol o
. i i

Circuit 13 Circuit 14

sim et al. "Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms." Advanced Quantum Technologies 2.12 (2019): 1900070.
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Applying a variational model & Qiskit




Extracting labels & Qiskit




Extracting labels
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