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Theory of Positive Definite and Related Functions. Springer-Verlag, New York,

1984.
- Shigeo Abe, Support Vector Machines for Pattern Classification



Hilbert-Schmidt theory.1 5

If a symmetric function H(x, x′)

satisfies
M∑

i,j

hihjH(xi, xj) ≥ 0 (1)

for each M ≥ 0, xi and hi ∈ R (,i.e. H is nonnegative definite),
then there exists a mapping g(x), such that H can be factorized

H(x, x′) = gT (x)g(x′).

Therefore

∑

i,j

hihjH(xi, xj) = (
M∑

i=1

hig
T (xi))(

M∑

i=1

hig(xi)) ≥ 0

Eq. (1) - Mercer’s condition, H(x, x′) - positive semidefinite
(Mercer) kernel

1Shigeo Abe, Support Vector Machines for Pattern Classification
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D

Positive Semidefinite Kernels and Reproducing
Kernel Hilbert Space

Support vector machines are based on the theory of reproducing kernel Hilbert
space. Here, we summarize some of the properties of positive semidefinite
kernels and reproducing kernel Hilbert space based on [30].

D.1 Positive Semidefinite Kernels

Definition D.1. Let H(x,x′) be a real-valued symmetric function with x
and x′ being m-dimensional vectors. For any set of data {x1, . . . ,xM} and
hM = (h1, . . . , hM )T with M being any natural number, if

hT
MHMhM ≥ 0 (D.1)

is satisfied (i.e., HM is a positive semidefinite matrix), we call H(x,x′) a
positive semidefinite kernel, where

HM =

⎛
⎜⎝

H(x1,x1) · · · H(x1,xM )
...

. . .
...

H(xM ,x1) · · · H(xM ,xM )

⎞
⎟⎠ . (D.2)

If (D.1) is satisfied under the constraint

M∑

i=1

hi = 0, (D.3)

H(x,x′) is called a conditionally positive semidefinite kernel.

From the definition it is obvious that if H(x,x′) is positive semidefinite, it
is also conditionally positive semidefinite. In the following we discuss several
properties of (conditionally) positive semidefinite kernels that are useful for
constructing positive semidefinite kernels.
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Theorem D.2. If
H(x,x′) = a, (D.4)

where a > 0, H(x,x′) is positive semidefinite.

Proof. Because for any natural number M ,

HM = (
√
a, . . . ,

√
a)T (

√
a, . . . ,

√
a), (D.5)

H(x,x′) is positive semidefinite. �

Theorem D.3. If H1(x,x
′) and H2(x,x

′) are positive semidefinite kernels,

H(x,x′) = a1H1(x,x
′) + a2H2(x,x

′) (D.6)

is also positive semidefinite, where a1 and a2 are positive.

Proof. Because for any M , hi, and xi

hT
M (a1H1M + a2H2M )hM = a1h

T
MH1MhM + a2h

T
MH2MhM ≥ 0, (D.7)

H(x,x′) is positive semidefinite. �

Theorem D.4. If H(x,x′) = f(x) f(x′), where f(x) is an arbitrary scalar
function, H(x,x′) is positive semidefinite.

Proof. Because for any M , hi, and xi

M∑

i,j=1

hi hj f(xi) f(xj) =

(
M∑

i=1

hi f(xi)

)2

≥ 0, (D.8)

H(x,x′) is positive semidefinite. �

Theorem D.5. If H1(x,x
′) and H2(x,x

′) are positive semidefinite,

H(x,x′) = H1(x,x
′)H2(x,x

′) (D.9)

is also positive semidefinite.

Proof. It is sufficient to show that if M×M matrices A = {aij} and B = {bij}
are positive semidefinite, {aij bij} is also positive semidefinite.

Because A is positive semidefinite, A is expressed by A = FTF , where F
is an M ×M matrix. Then aij = fTi fj , where fj is the jth column vector of
F . Thus for arbitrary h1, . . . , hM ,

M∑

i,j=1

hi hj f
T
i fj bij =

M∑

i,j=1

(hi fi)
T (hj fj) bij ≥ 0.� (D.10)
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Example D.6. The linear kernel H(x,x′) = xTx is positive semidefinite be-
cause HM = (x1, . . . ,xM )T (x1, . . . ,xM ). Thus, from Theorems D.2 to D.5
the polynomial kernel given by H(x,x′) = (1+xTx′)d is positive semidefinite.

Corollary D.7. If H(x,x′) and H ′(y,y′) are positive semidefinite kernels,
where x and y may be of different dimensions, H(x,x′)H ′(y,y′) is also a
positive semidefinite kernel.

Corollary D.8. Let H(x,x′) be positive semidefinite and satisfy

|H(x,x′)| ≤ ρ, (D.11)

where ρ > 0. Then if

f(y) =
∞∑

i=1

ai y
i (D.12)

converges for |y| ≤ ρ, where ai ≥ 0 for all integers i, the composed kernel
f(H(x,x′)) is also positive semidefinite. �

Proof. From Theorem D.5, Hi(x,x′) is positive semidefinite. Then from The-
orem D.5,

N∑

i=0

ai H
i(x,x′) (D.13)

is positive semidefinite for all integers N . Therefore, so is f(H(x,x′)). �

From Corollary D.8, especially for positive semidefinite kernel H(x,x′),
exp(H(x,x′)) is also positive semidefinite.

In the following we clarify the relations between positive and conditionally
positive semidefinite kernels.

Lemma D.9. Let

H(x,x′) = K(x,x′) +K(x0,x0)−K(x,x0)−K(x′,x0). (D.14)

Then H(x,x′) is positive semidefinite, if and only if K(x,x′) is conditionally
positive semidefinite.

Proof. For {x1, . . . ,xM} and hM = (h1, . . . , hM )T with

M∑

i=1

hi = 0, (D.15)

we have
hT
MHMhM = hT

MKMhM . (D.16)

Thus, if H(x,x′) is positive semidefinite, K(x,x′) is conditionally positive
semidefinite.
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On the other hand, suppose that K(x,x′) is conditionally positive
semidefinite. Then for {x1, . . . ,xM} and hM = (h1, . . . , hM )T with

h0 = −
M∑

i=1

hi, (D.17)

we have

0 ≤
M∑

i,j=0

hi hj K(xi,xj)

=
M∑

i,j=1

hi hj K(xi,xj) +

M∑

i=1

hi h0 K(xi,x0) +

M∑

j=1

h0 hj K(x0,xj)

+h2
0 K(x0,x0)

=
M∑

i,j=1

hi hj H(xi,xj). (D.18)

Therefore, H(x,x′) is positive semidefinite. �

Theorem D.10. Kernel K(x,x′) is conditionally positive semidefinite if and
only if exp(γ K(x,x′)) is positive semidefinite for any positive γ.

Proof. If exp(γ K(x,x′)) is positive semidefinite, exp(γ K(x,x′)) − 1 is con-
ditionally positive semidefinite. So is the limit

K(x,x′) = lim
γ→+0

exp(γ K(x,x′))− 1

γ
. (D.19)

Now let K(x,x′) be conditionally positive semidefinite and choose some
x0 and H(x,x′) as in Lemma D.9. Then for positive γ

γK(x,x′) = γH(x,x′)− γK(x0,x0) + γK(x,x0) + γK(x′,x0). (D.20)

Thus,

exp(γK(x,x′)) = exp(γH(x,x′)) exp(−γK(x0,x0))

× exp(γK(x,x0)) exp(γK(x′,x0)). (D.21)

From Theorems D.4 and D.5 and Corollary D.8, exp(γK(x,x′)) is positive
semidefinite. �

Example D.11. Kernel H(x,x′) = −‖x − x′‖2 is conditionally positive

semidefinite because for
∑M

i hi = 0,
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hT
M HM hM = −

M∑

i=1

hi hj ‖xi − xj‖2

= −
M∑

i,j=1

hi hj (x
T
i xi − 2xT

i xj + xT
j xj)

= 2

(
M∑

i=1

hi xi

)T ( M∑

i=1

hi xi

)
≥ 0. (D.22)

Thus, exp(−γ ‖x− x′‖2) is positive semidefinite.

D.2 Reproducing Kernel Hilbert Space

Because a positive semidefinite kernel has the associated feature space called
the reproducing kernel Hilbert space (RKHS), support vector machines can
determine the optimal hyperplane in that space using the kernel trick. In
this section, we discuss reproducing kernel Hilbert spaces for positive and
conditionally positive semidefinite kernels.

For the positive semidefinite kernels, the following theorem holds.

Theorem D.12. Let X be the input space and H(x,x′) (x,x′ ∈ X) be a
positive semidefinite kernel. Let H0 be the space spanned by the functions
{Hx |x ∈ X} where

Hx(x
′) = H(x,x′). (D.23)

Then there exist a Hilbert space H, which is a complete space of H0, and the
mapping from X to H such that

H(x,x′) = 〈Hx, Hx′〉. (D.24)

Here, instead of xTx′, we use 〈x,x′〉 to denote the dot-product.

Proof. Let Hx(x
′) = H(x,x′) and H0 be a linear subspace generated by the

functions {Hx |x ∈ X}. Then for f, g ∈ H0 expressed by

f =
∑

xi∈X

ci Hxi
, (D.25)

g =
∑

x′
j∈X

dj Hx′
j
, (D.26)

we define the dot-product as follows:

〈f, g〉 =
∑

x′
j∈X

dj f(x
′
j)

=
∑

xi,x′
j∈X

ci dj H(xi,x
′
j)

=
∑

xi∈X

ci g(xi). (D.27)
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Now we show that (D.27) satisfies the properties of the dot-product.
Clearly, (D.27) is symmetric and linear. Also, according to the assumption
of H(x,x′) being positive semidefinite,

〈f, f〉 =
∑

xi,xj∈X

ci cj H(xi,xj) ≥ 0 (D.28)

is satisfied. Here, the strict equality holds if and only if f is identically zero.
Thus, (D.27) is the dot-product. Hence, H0 is a pre-Hilbert space and its
completion H is a Hilbert space, which is called RKHS associated with Hx.

From (D.27) the following reproducing property is readily obtained:

〈f,Hx〉 = f(x). (D.29)

In particular,
〈Hx, Hx′〉 = H(x,x′).� (D.30)

For a conditionally positive semidefinite kernel, for f ∈ H0 the following
theorem holds.

Theorem D.13. Let H(x,x′) (x,x′ ∈ X) be a conditionally positive
semidefinite kernel. Then there exist a Hilbert space H and a mapping Kx

from X to H such that

H(x,x′)− 1

2
H(x,x)− 1

2
H(x′,x′) = −‖Kx −Kx′‖2. (D.31)

Proof. For x0 we define

K(x,x′) =
1

2
(H(x,x′) +H(x0,x0)−H(x,x0)−H(x′,x0)) , (D.32)

which is a positive semidefinite kernel from Lemma D.9. Let H be the associ-
ated RKHS for K(x,x′) and Kx(x

′) = K(x,x′). Then

‖Kx −Kx′‖2 = K(x,x) +K(x′,x′)− 2K(x,x′)

= −H(x,x′) +
1

2
H(x,x) +

1

2
H(x′,x′). (D.33)

Thus the theorem holds. �
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Φ(x, y) ≡ (x, y, e−(x
2+y2)), R2 → R3



Polynomial kernel

kp(x,y) = (x · y + 1)d

Φ(x) =




1√
2x1√
2x2√

2x1x2
x21
x22




R2 → R6

k(x,y) =
[
1
√

2x1
√

2x2
√

2x1x2x
2
1x

2
2

]
·




1√
2y1√
2y2√

2y1y2
y21
y22




=

= 1 + 2 x1y1 + 2x2y2 + 2x1x2y1y2 + x21y
2
1 + x22y

2
2 = (x · y + 1)2
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Lagrange theory (refresher) 2 13

minimize : f(w)

under the condition : gj(w) ≤ 0

hk(w) = 0

Introduce the Lagrangian:

L ≡ 1

2
f(w) +

∑

j

αjgj(w) +
∑

k

βkhk(w)

and minimize

∂L
∂wi

= 0,
∂L
∂βk

= 0

2Joseph Louis Lagrange; Giuseppe Lodovico Lagrangia
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Lagrange theory (refresher) 14

Eliminating ω we obtain:

maximize : L(α, β)

under the condition : αj ≥ 0 for each j

If we manage to find the optimal α̂, β̂ then we can find ŵ and b
from

f(ŵ) = L(α̂, β̂)

αjgj(ω̂) = 0 за всяко j

For a given j from the second condition it follows that αj ≡ 0 or
gj(ω) ≡ 0.
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f(ŵ) = L(α̂, β̂)

αjgj(ω̂) = 0 за всяко j

For a given j from the second condition it follows that αj ≡ 0 or
gj(ω) ≡ 0.



SVM theory (in two slides) 15

L =
1

2
w.w +

∑

i

αi[1− yi(w.xi + b)]

0 =
∂L
∂wi

= wi −
∑

i

αiyixi (2)

0 =
∂L
∂b

=
∑

i

αiyi

After expressing w and b with α:

L(α) =
∑

j

αj −
1

2

∑

j,k

αjyj(xj .xk)ykαk ≡

≡ e.α− 1

2
α.(y).G.(y).α

Gij ≡ xixj
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minimize :
1

2
α.(y).G.(y).α− e.α

under the condition : αi > 0

α.y = 0

We find w from (2) and b from:

αi[yi(wxi + b)− 1] = 0

Notes:
I The points i with αi 6= 0 are the support vectors
I xi enter the Lagrangian via the Gram matrix only.
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Мinimize

L(w, b, ξ, α, β) =
1

2
||w||2 + C

m∑

i=1

ξi

−
m∑

i=1

αi(yi(wTxi + b)− 1 + ξi)−
m∑

i=1

βiξi

In dual representation:

L(α) =

M∑

i=1

αi −
1

2

M∑

i,j=1

αiαjxT
i xjyiyj (3)

under the conditions
∑

yiαi = 0, C ≥ αi ≥ 0 (4)
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Nonlinear SVM 19

The Lagrangian

L(α) =
∑

j

αj −
1

2

∑

j,k

αjyj(xj .xk)ykαk (5)

is replaced with

L(α) =
∑

j

αj −
1

2

∑

j,k

αjyjH(xj , xk)ykαk (6)

and the classes (i.e. yi) can be separated not by the plane

D(x) = wx + b ≡
∑

i

αiyixT
i x + b (7)

but by the surface

D(x) = wg(x) + b ≡
∑

i

αiyiH(xi,x) + b (8)
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L(α) =
∑

j

αj −
1

2

∑

j,k

αjyjH(xj , xk)ykαk (6)

and the classes (i.e. yi) can be separated not by the plane

D(x) = wx + b ≡
∑

i

αiyixT
i x + b (7)

but by the surface

D(x) = wg(x) + b ≡
∑

i

αiyiH(xi,x) + b (8)
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