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If a symmetric function H (z, ') satisfies
M
Zhih]‘H(IL’Z‘,JZ]‘) > 0 (1)
0.

for each M > 0, x; and h; € R (,i.e. H is nonnegative definite),
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Hilbert-Schmidt theory.!
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If a symmetric function H (z, ') satisfies
M
Zhih]‘H(IL’Z‘,JZ]‘) > 0 (1)
i,J
for each M > 0, x; and h; € R (,i.e. H is nonnegative definite),
then there exists a mapping g(x), such that H can be factorized

H(z,2') = g" (x)g(a)).
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Hilbert-Schmidt theory.!
——

If a symmetric function H (z, ') satisfies
M
Zhih]‘H(IL’Z‘,JZ]‘) > 0 (1)
i,J
for each M > 0, x; and h; € R (,i.e. H is nonnegative definite),
then there exists a mapping g(x), such that H can be factorized

H(z,2') = g" (x)g(a").
Therefore
th‘th(l’z‘,% thg thg (x:))
4,J

Eq. (1) - Mercer’s condltlon, H(z,2') - positive semidefinite
(“AQTPDT\ ](DY"I’\D]
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D

Positive Semidefinite Kernels and Reproducing
Kernel Hilbert Space

Support vector machines are based on the theory of reproducing kernel Hilbert
space. Here, we summarize some of the properties of positive semidefinite
kernls and reproducing kernel Hilbert space based on [30].

D.1 Positive Semidefinite Kernels

Definition D.1. Let H(x,x’) be a real-valued symmetric function with x

and x' being m-dimensional vectors. For any set of data {xi....,x} and
har = (b, har)" with M being any natural number, if
i Hahy = 0 (D.1)

is satisfied (i.c., Has is a positive semidefinite matrix), we call H(x,x') a
positive semidefinite kernel, where

H(xi,x1) - H(xi,Xar)

Hy = : . : (D2)
H(xar,x1) - H(xar.Xar)
If (D.1) is satisfied under the constraint
a
Shi= (D.3)
=

H(x,x') is called a conditionally positive semidefinite kernel.

From the definition it is obvious that if H(x,x') is positive semidefinite, it
is also conditionally positive semidefinite. In the following we discuss several
properties of (conditionally) positive semidefinite kernels that are useful for
constructing positive semidefinite kernels
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Theorem D.2. If

H(x,x) =a, (D.4)
where a > 0, H(x,x') is positive semidefinite.
Proof. Because for any natural number M,
Hy = (Va,..., va)y'(va,..., Va), (D.5)
H(x,x') is positive semidefinite. B
Theorem D.3. If Hi(x,x) and H(x,x') are positive semidefinite kernels,
H(x,x') = a1 Hy(x,x') + ap Hy(x, X') (D.6)
is also positive semidefinite, where ay and ay are positive.
Proof. Because for any M, hy, and x;
Yy (arHuas + azHa) hag = arhfy Hiaghag + azhfy Haahas 20, (D7)
H(x,x') is positive semidefinite. W

Theorem D.d. If H(x.x') = f(x) f(x'), where f(x) is an arbitrary scalar
Junction, H(x,x') is positive semidefinite.

Proof. Because for any M, h, and x;

M
D hihy fxi) Fxy

(D.8)
o)
H(x,x') is positive semidefinitc. B
Theorem D.5. If Hy(x.x) and Hy(x.x') are positive semidefinite,
H(x,x) = Hy(x.x) Hy(x.x') (D.9)

is also positive semidefinite.

Proof. Tt is sufficient to show that if M x M matrices A = {a;;} and B = {b;;}
are positive semidefinite, {a;; by;} is also positive semidefinite

Because A is positive semidefinite, A is expressed by A = FTF, where F
is an M x M matrix. Then a;; = £7f;, where f; is the jth column vector of
F. Thus for arbitrary ha..... har,

M M
ST by £ 60y = 3 () (b £) by = 0. M (D.10)

ig=1 =1
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Ezample D.6. The linear kernel H(x,x') = xTx is positive semidefinite be-
cause Har = (x1,....%a)" (X1....,Xar). Thus, from Theorems D.2 to D.5
the polynomial kernel given by H(x,x) = (14+x7x) is positive semidefinite

Corollary D.7. If H(x,x) and H'(y.y') are positive semidefinite kernels,
where x and y may be of different dimensions, H(x.x') H'(y,y') is also a
positive semidefinite kernel.

Corollary D.8. Let H(x,x') be positive semidefinite and satisfy

[Hxx)] < p. D.11)
p>0. Then if
fo) = ay D.12)

converges for |y| < p, where a; > 0 for all integers i, the composed kernel
(H(x,x)) is also positive semidefinite. W

Proof. From Theorem D.5, H'(x,x') is positive semidefinite. Then from The-
orem D.5,

Hi(x,x') (D.13)

is positive semidefinite for all integers N. Therefore, so is f(H(x.x')). W

From Corollary D.8, especially for positive semidefinite kernel H(x,x'),
exp(H(x,x)) is also positive semidefinite.

In the following we clarify the relations between positive and conditionally
positive semidefinite kernels.

Lemma D.9. Let
H(x.x) = K(x,x) + K(xo,%0) — K(x.%0) — K(x',%0), (D.14)

Then H(x,x') is positive semidefinite, if and only if K (x.x') is conditionally
positive semidefinite.

Proof. For {x1.....xar} and hag = (h,...,har)T with
M
Shi=o, (D.15)
=i
we have
b, Hyhyy =l Ky (D.16)

Thus, if H(x,x) is positive semidefinite, K(x,x) is conditionally positive
semidefinite
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On the other hand, suppose that K(x,x) is conditionally positive
semidefinite. Then for {xy,...,xar} and hyy = (b, hag)” with

M

o ==Y hi, (D.17)
=
we have

M
0< Z hihy K(x:,%;)

G
M M
= z hihy K(xi.%;) Zn ho K (xi%0) + Y ho hy K (%0, %;)
vl

+h2 K (xo,%0)

ar
= Z hihy H(xi,%;). (D.18)

fe=
Therefore, H(x,x') is positive semidefinite. B

Theorem D.10. Kernel K (x,x') is conditionally positive semidefinite if and
only if exp(y K (x,X')) is positive semidefinite for any positive 5.

Proof. If exp(y K (x,x')) is positive semidefinite, exp(y K (x,x')) — 1 is con-
ditionally positive semidefinite. So is the limit

exp(y K (x,x))

K(ex) = lim, (D.19)

Now let K(x,x') be conditionally positive semidefinite and choose some
xo and H(x,x') as in Lemma D.9. Then for positive

YK (6 X) = 7 H (3 X') = 1K (x0, %0) + 7K (5, x0) + 7K (<, x0). (D.20)
Thus,

exp(7K (x,X')) = exp(vH (x, X)) exp(—7K (x0.X0))
x exp(vK (x, x0)) exp(1K (x', %)), (D.21)
From Theorems D.4 and D.5 and Corollary D.8, exp(vK (x,x')) is positive

semidefinite. B

Erample D.11. Kernel H(x,x') = —|x — x/|* is conditionally positive
semidefinite because for 31 by = 0,
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M
bl Hy by = = hihy i = 2
=

u
== 3 by (xTxi — 2xTx5 + X %)
=1

M T /M
=2 (Z mx,> <Z mx,> >0. (D.22)
= =

Thus, exp(—7/x — x'[[2) is positive semidefinite.

D.2 Reproducing Kernel Hilbert Space

Because a positive semidefinite kernel has the associated feature space called
the reproducing kernel Hilbert space (RKIS), support vector machines can
determine the optimal hyperplanc in that space using the kernel trick. In
this section, we diseuss reproducing kernel Hilbert spaces for positive and
conditionally positive semidefinite kernels.

For the positive semidefinite kernels, the following theorem holds.
Theorem D.12. Let X be the input space and H(x.x)(x,x € X) be a
positive semidefinite kernel. Let Hy be the space spanned by the functions
{Hx|x € X} where

Hy (') = H(x,x). (D.23)
Then there exist a Hilbert space H, which is a complete space of Hy, and the
mapping from X to H such that

H(x,x') = (Hy, He). (D.24)
Here, instead of x"x/, we use (x,X') to denote the dot-product.

Proof. Let Hy(x') = H(x,x) and Hy be a lincar subspace gencrated by the
functions {Hy | x € X}. Then for f.g € Ho expressed by

IEDICT (D.25)
Pt

9= d;Hy, (D.26)
xjex '

we define the dot-product as follows:
(f9)= Y d flx})
v
= Y cidjHxix))

xi X eX

= > cglx). (D.27)

xEX
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Now we show that (D.27) satisfies the properties of the dot-product.
Clearly, (D.27) is symmetric and lincar. Also, according to the assumption
of H(x,x') being positive semidefinite,

Uh = Y e Hexx) 20 (D.28)

xixEX

is satisfied. Here, the strict equality holds if and only if f is identically zero.

Thus, (D.27) is the dot-product. Hence, Ho is a pre-Hilbert space and its

completion H is a Hilbert space, which is called RKHS associated with Hx.
From (D.27) the following reproducing property is readily obtained:

(f Hy) = f(x) (D.29)

In particular,
(Hy, Hy) = H(x,x').® (D.30)

For a conditionally positive semidefinite kernel, for f € Ho the following
theorem holds.

Theorem D.13. Let H(x,x')(x,x € X) be a conditionally positive
semidefinite kernel. Then there exist a Hilbert space H and a mapping Ky
Jrom X to H such that

Hix,x) %H(x.x) - %H(x’,x' = K — K. (D.31)
Proof. For xg we define

K(x,x) = %(II[XAXI) + Hixo,x0) — H(x.x0) = H(x',x0)),  (D.32)

which is a positive semidefinite kernel from Lemma D.9. Let H be the associ-
ated RKHS for K (x,x) and Kx(x') = K (x,x'). Then
[ Kx — Kr|? = K(x.%) + K(x,x') — 2K (x.X')
1 1
= —H(xx) + 5H(x) + FH. ). (D.33)

Thus the theorem holds. B
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Polynomial kernel

kp(x,y) = (x-y+1)¢



Polynomial kernel




Polynomial kernel
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Lagrange theory (refresher) 2

minimize : f(w)
under the condition : g;(w) <0
hk(W) =0

13

2Joseph Louis Lagrange; Giuseppe Lodovico Lagrangia



Lagrange theory (refresher) 2 13

minimize : f(w)
under the condition : g;(w) <0
hk(W) =0

Introduce the Lagrangian:
1
L=Sf(w)+ Z ajg;(w) + ; Brhi(w)
j

and minimize

oL oL

8wi:O’ %:O

2Joseph Louis Lagrange; Giuseppe Lodovico Lagrangia



Lagrange theory (refresher)

Eliminating w we obtain:

maximize : £(a, )

under the condition : a;; > 0 for each j

14




Lagrange theory (refresher)

Eliminating w we obtain:

maximize : £(a, )

under the condition : a;; > 0 for each j

If we manage to find the optimal d,@ then we can find w and b
from

f(w) = L(&, B)

a;g;j(@w) = 0 3a Besko j

14




Lagrange theory (refresher) 14

Eliminating w we obtain:

maximize : £(a, )

under the condition : a;; > 0 for each j

If we manage to find the optimal d,@ then we can find w and b
from

f(w) = L(&, B)

a;g;j(@w) = 0 3a Besko j

For a given j from the second condition it follows that a; = 0 or
gj(w) = 0.




SVM theory (in two slides)

1
L= SWw + Z a;[1 —yi(w.x; + b)]

15



SVM theory (in two slides)

fww—i—Zaz

awz

yz W.X; +b)]

Z QYT

:%:Zaiyi

15



SVM theory (in two slides)

fww—i—Zaz — yi(w.x; + )]

awz Z QYT
7 = ; QY5

After expressing w and b with a:

1
() = Z =5 Zozjyj(xj.xk)ykozk =
J

j?k

=ea— %a.(y).G.(y).a

15



SVM theory (in two slides)

fww—i—Zaz — yi(w.x; + )]

awz Z QYT
7 = ; QY5

After expressing w and b with a:

1
() = Z =5 Zozjyj(xj.xk)ykozk =
J

j?k

=ea— %a.(y).G.(y).a

Gi]‘ = xi:cj

15



1
minimize : ga.(y).G.(y).a — e

under the condition : «; > 0

ay =20



1
minimize : 504.(y).G.(y).oz — e

under the condition : «; > 0

ay =20

We find w from (2) and b from:

a;lyi(wz; +b) —1] =0



1
minimize : §a.(y).G.(y).a — e

under the condition : «; > 0
ay =20
We find w from (2) and b from:

a;lyi(wz; +b) —1] =0

Notes:
» The points ¢ with «; % 0 are the support vectors

» z; enter the Lagrangian via the Gram matrix only.



Soft margin SVM

Optimal hyperplane

Maximum

17




Soft margin SVM
——

Minimize

£(w,b,6,0,8) = 5w I

_Zaz yzw Xz+b _1+£z
i=1

Z Biéi

18



Soft margin SVM
——

Minimize
1 m
L(w, b€ o, ) = 5[|w][? +CZ&~

_Zazyzw Xz+b_1+§z Zﬂz&

i=1

In dual representation:
Zal - = Z QiaX] XYy, (3)
’Lj 1

under the conditions

Y 5iai =0,C>0; >0 (4)



Nonlinear SVM
P——

The Lagrangian

L) = Zaj —

1
5 > ajy;(@jm)yka
j?k

19



Nonlinear SVM
P——

The Lagrangian

1
Q)= a;— 3 > oy ak)yro (5)
J ik

is replaced with
@) = Z Qj — Z oy H (), ox ) yrou, (6)
J

and the classes (i.e. y;) can be separated not by the plane

D(x) =wx+b= Z QX! x + b (7)

7

19



Nonlinear SVM
P——

The Lagrangian

1
a) = Z =3 Zozjyj(xj.azk)ykozk
J

j?k

is replaced with
O‘) = Zaj Zajy] x]axk‘ Yk
J
and the classes (i.e. y;) can be separated not by the plane

D(x) =wx+b= Zaiyixfx +5b

but by the surface

D(x) =wg(x)+b= ZaiyiH(xi,X) +0b

19



Quantum Circuits and Kernels

https:
//learn.qiskit.org/course/machine-learning/quantum-feature-maps-kernels
Vojtech Havlicek, Antonio D. Cdrcoles, Kristan Temme, Aram W. Harrow,
Abhinav Kandala, Jerry M. Chow and Jay M. Gambetta, Supervised learning with
quantum enhanced feature spaces, Nature 567, 209-212 (2019),
doi.01g:10.1038/541586-019-0980-2, arXiv:1804.11326.


https://learn.qiskit.org/course/machine-learning/quantum-feature-maps-kernels
https://learn.qiskit.org/course/machine-learning/quantum-feature-maps-kernels

Quantum Circuits and Kernels

https:
//learn.qiskit.org/course/machine-learning/quantum-feature-maps-kernels
Vojtech Havlicek, Antonio D. Cdrcoles, Kristan Temme, Aram W. Harrow,
Abhinav Kandala, Jerry M. Chow and Jay M. Gambetta, Supervised learning with
quantum enhanced feature spaces, Nature 567, 209-212 (2019),
doi.01g:10.1038/541586-019-0980-2, arXiv:1804.11326.

In quantum machine learning, a quantum feature map, ¢(E), maps a classical feature vector, Z
, to a quantum Hilbert space, |¢(Z)) (¢(Z)|. The quantum feature map transforms & — |¢(Z))
using a unitary transformation (745(%), which is typically a parameterized quantum circuit.


https://learn.qiskit.org/course/machine-learning/quantum-feature-maps-kernels
https://learn.qiskit.org/course/machine-learning/quantum-feature-maps-kernels
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Within the entangling blocks, Ug(): Pi € {I,X,Y, Z} denotes the Pauli matrices, the index S
describes connectivity between different qubits or data points:
S € {(}) combinations, k = 1,...n}, and by default the data mapping function ¢s(Z) is

= if § = {i}
¢s : H{(ﬂ_mi)(ﬂ_%) if 8 = {i, 7}



Within the entangling blocks, Ug(): Pi € {I,X,Y, Z} denotes the Pauli matrices, the index S
describes connectivity between different qubits or data points:
S € {(}) combinations, k = 1,...n}, and by default the data mapping function ¢s(Z) is

T if S=4{i
ps:z " . {}
(m—a;)(m— ;) if S ={i,j}
whenk =2, Py = Z, P, = ZZ, this is the ZZFeatureMap in Qiskit:

d
Uq,(i = <exp< Z(]S{J k} Z ®Zk> exp( Z(]ﬁ{]} )H®n)
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