Quantum Computing

Outline

- Key Concepts in Quantum Computing
- Possible Applications of QC
- Present Status on QC Resources
- Recent Developments and Future Directions
- Conclusion
- Q&A and Discussion

Go to www.menti.com and use the code 7427 2778

Homework

What QC resources do you know about?

Key Concepts in Quantum Computing

LinkedIn SlideShare: 17 Nov 2014 – "Quantum Computing: Welcome to the Future" by Vern Brownell CEO

Where did this idea come from?

Key Concepts in Quantum Physics

Key Quantum Effects

LinkedIn SlideShare: 17 Nov 2014 – "Quantum Computing: Welcome to the Future" by Vern Brownell CEO

Key Concepts in QC

LinkedIn SlideShare: 29 Sep 2012 – "Topic: Quantum computer" By Nisarg Y Bhagavantanavar

Vesselin G. Gueorguiev, PhD

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

Key Concepts in QC

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

[0> =[1, 0][⊤]

<u>Quantum Gates-Hadamard</u>

Simplest gate involves one qubit and is called a *Hadamard* Gate (also known as a square-root of NOT gate.) Used to put qubits into superposition.

 $|1\rangle = [0,1]^{T}$ $|0\rangle \leftrightarrow |1\rangle$ $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $X = (\sqrt{NOT})^2$ $\sqrt{X} = \sqrt{NOT}$ $=rac{1}{2}egin{bmatrix} 1+i & 1-i \ 1-i & 1+i \end{bmatrix}$

Note: Two Hadamard gates used in succession can be used as a NOT gate.

LinkedIn SlideShare: 21 Apr 2014 – "Quantum Computing" by Rohit Mishra & Ankit Agarwal

Vesselin G. Gueorguiev, PhD

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

Classical Computers		Quantum Computers	
Calculates with transistors which can represent either 0 or 1	-• ° •	Calculates with Qubits, which can represent 0 and 1 simultaneously	
Uses transistors to create these logical switches		Uses either trapped ions, superconducting loops, quantum dots, diamond vacancies to create Qubits	
Multiple transistors (~2-14) make up basic logic gates		Multiple Qubits make up a logical Qubit (9-100's?)	
Compute power scales in a 1-to-1 relationship with the number of transistors and clock speed	2	Compute power increases exponentially in proportion to the number of logical Qubits	
Low error rates and operate at room temperature		High error rates and need to be ultracold	
Used for general purpose computing		Used for optimization and factoring. A sufficient number of Qubits = Cryptographically Relevant Quantum Computer	

Source: Steve Blank/CBInsights

Possible Applications of QC

- Quantum Communications and Quantum Sensing
 - Quantum Key Distribution (BB84 Bennett & Brassard 1984)
 - Cryptography Prime Number Factorization (Peter Shor 1994)
 - State Teleportation (Charles Bennett et al 1993)
- Artificial Intelligence
 - Large Data processing (Lov Grover search 1997)
 - Optimization problems ...
 - Pattern Recognition ...
- Variety of Art form expressions ...
 - Quantum Music Composer
 - Wearable Gadgets
- ???

Quantum Teleportation

(top, left) Richard Jozsa, William K. Wootters, Charles H. Bennett. (bottom, left) Gilles Brassard, Claude Crépeau, Asher Peres. Photo: André Berthiaume.

Advantage of the Shor's Algorithm

Quantum Algorithm: Shor's Algorithm

In 2001, Shor's algorithm was demonstrated by a group at IBM, who factored 15 into 3×5 , using an NMR implementation of a quantum computer with 7 qubits

with a classical computer

# bits	1024	2048	4096
factoring in 2006	10 ⁵ years	5x10 ¹⁵ years	3x10 ²⁹ years
factoring in 2024	38 years	10 ¹² years	7x10 ²⁵ years
factoring in 2042	3 days	3x10 ⁸ years	2x10 ²² years

with potential quantum computer

# bits	1024	2048	4096
# qubits	5124	10244	20484
# gates	3x10 ⁹	2X10 ¹¹	X10 ¹²
factoring time	4.5 min	36 min	4.8 hours

Slide by Meghaditya Roy Chaudhury on "Quantum Computing" at Jadavpur University

See also R. J. Hughes, LA-UR-97-4986

Possible Applications of QC

What is the future of quantum computing?

Present Status on **QC** Resources

- **Quantum Computing Hardware**
 - D-Wave (128/512)[Q5000]
 - IBM (50)[127]
 - Intel (49)
 - Google (72)
 - Rigetti (19)[32]
 - AliBaba (11)
- Quantum Computing Software

 - IBM Q-Experience and QISKit
 - **Rigetti Forest**
 - Microsoft #Q, Google CirQ, QC Ware
 - **Amazon Braket** •

rigetti

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

- **D**-Wave

Qiskit

阿里巴巴

D-Wave 2000-qubit processor

Superconducting loop

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

IBM 50-Qubit Processor

'Tangle Lake,' Intel's 49-Qubit Processor

THE MAGIC INSIDE

1 The silicon chip

There are 49 qubits on Tangle Lake's silicon chip (1). Each qubit is made of niobium, the 34th-most common element in the Earth's crust. Niobium is often added to steel to increase strength in high temperature applications.

The substrate (2) is grounded by superconducting spheres that offer mechanical strength and transmission of RF/microwave signals from package to chip.

Each qubit in Tangle Lake has two quantum mechanical tunnels, which are comprised of a thin oxide film between two aluminum wires. Known as Josephson junctions, they are critical to quantum computing. They allow for a qubit to represent both a 1 and a 0 at the same time (superposition) versus classic computing where information is encoded in bits as a string of 1s and 0s.

Magnified view of the qubit on Tangle Lake showing the Josephson junction.

26 spin q-bits

https://newsroom.intel.com/news/future-quantum-computing-counted-qubits/

2 The substrate

2uantum Technologies | Sample | www.yole.fr | @2020

Problems and Future Directions $|\psi\rangle = \sum_{n} c_n |n\rangle \longrightarrow |n_i\rangle$

- De-coherence
- Error Correction
- Output Measurement

Example - Single Bit Error Correction

Hamming - Correctable single bit error

• Finding "the right problems" for a quantum computer

NEWS

D-Wave's \$15 million quantum computer runs a staggering 2,000 qubits

D-Wave's 2000Q quantum computer will ship to select customers but could ultimately be available to others via the cloud

🖪 💟 🚭 🖗 🎯 🕑

By Agam Shah U.S. Correspondent, IDG News Service JAN 24, 2017 6:14 AM PT

Recent Developments and Future Directions

D-Wave Previews Next-Generation Quantum Computing Platform (5000 qubits)

Current Chimera[™] topology: each qubit is connected to **six other** qubits.

Pegasus topology: each qubit is connected to **15 other** qubits!

Google's Sycamore Qubits Geometry!

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular array of 54 qubits (grey), each connected to its four nearest neighbours with couplers (blue). The inoperable qubit is outlined. b, Photograph of the Sycamore chip.

Future Directions Are liquid-crystals part of the future QCs?

1 General characteristics

2 History

- 2.1 1880s-1960s
- 2.2 1970s
- 2.3 1980s
- 2.4 1990s
- 2.5 2000s-2010s
- **3** Illumination
- 4 Connection to other circuits
- 5 Passive and active-matrix
- 6 Active-matrix technologies

Future Directions First 3D quantum liquid crystal!

Quantum Liquid Crystals Could Speed Up Computers

Fri, 04/21/2017 - 9:57am by Kenny Walter , Science Reporter - 💆 @RandDMagazine

These images show light patterns generated by a rhenium-based crystal using a laser method called optical second-harmonic rotational anisotropy. At left, the pattern comes from the atomic lattice of the crystal. At right, the crystal has become a 3-D quantum liquid crystal, showing a drastic departure from the pattern due to the atomic lattice alone. Credit: Hsieh Lab/ Caltech

The electrons have different magnetic properties, depending on whether they flow forward or backward on a given axis!

Future Directions

What about the Quantum Dots?

Cadmium sulfide quantum dots

lead sulfide (selenide)

QDs can contain as few as 100 to 100,000 atoms diameter of ≈ 10 to 50 atoms (2 to 10 nanometers) nearly 3 million quantum dots could be lined up

end to end and fit within the width of a human thumb.

Colloidal quantum dots irradiated with a UV light. Different sized quantum dots emit different color light due to quantum confinement.

1 Production

- 1.1 Colloidal synthesis
- 1.2 Plasma synthesis
- 1.3 Fabrication
- 1.4 Viral assembly
- 1.5 Electrochemical assembly
- 1.6 Bulk-manufacture
- 1.7 Heavy-metal-free guantum dots
- 2 Health and safety
- 3 Optical properties
- 4 Potential applications
 - 4.1 Biology
 - 4.2 Photovoltaic devices

https://en.wikipedia.org/wiki/Quantum dot

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

Future Directions Quantum dots as liquid crystal dopants !

From the journal: Journal of Materials Chemistry

Quantum dots as liquid crystal dopants

Javad Mirzaei,^a Mitya Reznikov^b and Torsten Hegmann*abcd

J. Mater. Chem., 2012,22, 22350-22365;

https://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm33274d#!divAbstract

Future Directions Are diamonds only for jewelry ?

https://www.eurekalert.org/pub_releases/2019-06/ynu-rti062519.php

YOKOHAMA NATIONAL UNIVERSITY

https://bigthink.com/robby-berman/the-future-internet-could-be-built-of-diamonds

The future internet could be built of diamonds

Researchers at Princeton engineer a new type of diamond with silicon and boron that solves past issues with quantum data storage and retrieval.

ROBBY BERMAN 10 July, 2018

Fundamentals of Quantum Computing IAPS for Quanterall, 25 March 2022

Current Investment Efforts

Conclusion

- QC will be complementary to classical computing!
- It will be few more years until becoming of age!
- The QC territory is a wide-open field of opportunities:
 - Hardware development
 - Software development
 - Future QC based services and applications
- ???

Homework Assignments and Open Discussion

Review and start reading 1804.10068:

- Self-assessment using self-tests/quizzes from QWorld on the IAPS <u>qc-page https://qc.iaps.institute/</u>
- <u>Linear Algebra Review</u> and References by Zico Kolter (updated by Chuong Do) <u>https://cs229.stanford.edu/section/cs229-linalg.pdf</u>
- → Quantum machine learning for data scientists by Dawid Kopczyk <u>https://arxiv.org/abs/1804.10068</u>

Some more questions and topics from Vlado for his lectures next week!