Lecture 8

CLASSICAL AND QUANTUM GATES AND CIRCUITS

of the course "Fundamentals of Quantum Computing"

Stoyan Mishev

May 13, 2022

Classical gates and circuits

Quantum gates and circuits

Classical gates and circuits

"Elementary" classical (logical) gates are the maps $f: \{0,1\}^n \to \{0,1\}^m$ which can be grouped and aligned to construct more complex mappings.

"Elementary" classical (logical) gates are the maps $f: \{0,1\}^n \to \{0,1\}^m$ which can be grouped and aligned to construct more complex mappings. A particlar set $\{0,1\}^n$ is called a state. "Elementary" classical (logical) gates are the maps $f: \{0,1\}^n \to \{0,1\}^m$ which can be grouped and aligned to construct more complex mappings. A particlar set $\{0,1\}^n$ is called a state. So the classical computational process is the transformation of one "classical" state to another "classical" state. "Elementary" classical (logical) gates are the maps $f: \{0,1\}^n \to \{0,1\}^m$ which can be grouped and aligned to construct more complex mappings. A particlar set $\{0,1\}^n$ is called a state. So the classical computational process is the transformation of one "classical" state to another "classical" state. A classical gate is **reversible** if from its output it can recreate its input state uniquely, i.e. it's a bijection.

▶ NOT : $\{0,1\} \rightarrow \{0,1\}$: $x \rightarrow (1+x) \mod 2 \equiv (1 \oplus^2 x)$ where the notation $u \oplus^2 v = (u+v) \mod 2$ is used. \bar{x} is a shorthand for NOT(x)

¹after Tommaso Toffoli

▶ **NOT** : $\{0,1\} \rightarrow \{0,1\} : x \rightarrow (1+x) \mod 2 \equiv (1 \oplus^2 x)$ where the notation $u \oplus^2 v = (u+v) \mod 2$ is used. \bar{x} is a shorthand for NOT(x)

• AND :
$$\{0,1\}^2 \to \{0,1\} : (x_1,x_2) \to x_1.x_2$$

¹after Tommaso Toffoli

▶ **NOT** : $\{0,1\} \rightarrow \{0,1\} : x \rightarrow (1+x) \mod 2 \equiv (1 \oplus^2 x)$ where the notation $u \oplus^2 v = (u+v) \mod 2$ is used. \bar{x} is a shorthand for NOT(x)

• AND :
$$\{0,1\}^2 \to \{0,1\}$$
 : $(x_1, x_2) \to x_1.x_2$
• OR : $\{0,1\}^2 \to \{0,1\}$: $(x_1, x_2) \to x_1 \oplus^2 x_2 \oplus^2 x_1.x_2$

¹after Tommaso Toffoli

▶ **NOT** : $\{0,1\} \rightarrow \{0,1\}$: $x \rightarrow (1+x) \mod 2 \equiv (1 \oplus^2 x)$ where the notation $u \oplus^2 v = (u+v) \mod 2$ is used. \bar{x} is a shorthand for NOT(x)

• AND :
$$\{0,1\}^2 \to \{0,1\} : (x_1,x_2) \to x_1.x_2$$

- **OR** : $\{0,1\}^2 \to \{0,1\}$: $(x_1, x_2) \to x_1 \oplus^2 x_2 \oplus^2 x_1 \cdot x_2$
- ► XOR : $\{0,1\}^2 \to \{0,1\}$: $(x_1,x_2) \to x_1 \oplus^2 x_2$

¹after Tommaso Toffoli

▶ **NOT** : $\{0,1\} \rightarrow \{0,1\}$: $x \rightarrow (1+x) \mod 2 \equiv (1 \oplus^2 x)$ where the notation $u \oplus^2 v = (u+v) \mod 2$ is used. \bar{x} is a shorthand for NOT(x)

• AND :
$$\{0,1\}^2 \to \{0,1\} : (x_1,x_2) \to x_1.x_2$$

- **OR** : $\{0,1\}^2 \to \{0,1\}$: $(x_1, x_2) \to x_1 \oplus^2 x_2 \oplus^2 x_1 \cdot x_2$
- ► XOR : $\{0,1\}^2 \to \{0,1\}$: $(x_1,x_2) \to x_1 \oplus^2 x_2$

► **Toffoli**¹ :
$$\{0,1\}^3 \to \{0,1\}^3$$
 :
 $(x_1, x_2, x_3) \to (x_1, x_2, x_1. x_2 \oplus^2 x_3)$

¹after Tommaso Toffoli

 $\mathbf{6}$

$$\blacktriangleright \overline{A+B} = \overline{A}.\overline{B}$$

"BREAK THE LINE, CHANGE THE SIGN!"

Can you prove that

$$\overline{(\overline{x.\overline{y}}).(\overline{y.z})} = x.\overline{y} + y.\overline{z}$$

$$\overline{(\overline{x}+z)(\overline{x.y})} = x.\overline{z} + x.y ?$$

AND

OR

 $\begin{array}{c} \text{TOFFOLI} \\ x_1 & & & x_1 \\ x_2 & & & x_2 \\ x_3 & & & & x_3 \stackrel{2}{\oplus} x_1 x_2 \end{array}$

Additional (trivial) gates

$$ID: \{0,1\} \longrightarrow \{0,1\}$$

$$(x_1) \longmapsto ID(x_1) := x_1$$

$$FALSE: \{0,1\} \longrightarrow \{0,1\}$$

$$(x_1) \longmapsto FALSE(x_1) := 0$$

$$TRUE: \{0,1\} \longrightarrow \{0,1\}$$

$$(x_1) \longmapsto TRUE(x_1) := 1$$

$$COPY^{(1)}: \{0,1\} \longrightarrow \{0,1\}^2$$

$$(x_1) \longmapsto COPY(x_1) := (x_1,x_1)$$

A set \mathcal{F} of gates g_1, \ldots, g_L is universal if any gate can be expressed as a function of \mathcal{F} only. \mathcal{F} is constructed using special rules (it is not only a combination of gates). See the following two slides ². A series of connected gates is called a **classical circuit**.

²from Wolfgang Scherer - Mathematics Of Quantum Computing. An Introduction, Springer (2019)

(i) the g_1, \ldots, g_K are elements of this set, that is,

$$g_1,\ldots,g_K\in \mathcal{F}[g_1,\ldots,g_K]$$

(ii) padding operations of the form

$$p_{y_1,\dots,y_l;j_1,\dots,j_l}^{(n)} : \{0,1\}^n \longrightarrow \{0,1\}^{n+l} \\ (x_1,\dots,x_n) \longmapsto (x_1,\dots,x_{j_1-1},y_{j_1},x_{j_1+1},\dots,x_n)$$

which insert pre-determined bit values $y_1, \ldots, y_l \in \{0, 1\}$ at pre-determined slots $j_1, \ldots, j_l \in \{1, \ldots, n+l\}$ are elements of the set, that is, for any $l, n \in \mathbb{N}, y_1, \ldots, y_l \in \{0, 1\}$ and pairwise distinct $j_1, \ldots, j_l \in \{1, \ldots, n+l\}$

$$p_{y_1,\ldots,y_l;j_1,\ldots,j_l}^{(n)} \in \mathcal{F}[g_1,\ldots,g_K]$$

(iii) restriction and/or re-ordering operations

$$r_{j_1,\dots,j_l}^{(n)}: \begin{cases} 0,1\}^n \longrightarrow \{0,1\}^l \\ (x_1,\dots,x_n) \longmapsto (x_{j_1},\dots,x_{j_l}) \end{cases}$$
(5.8)

are elements of the set, that is, for any $l, n \in \mathbb{N}$, and pairwise distinct $j_1, \ldots, j_l \in \{1, \ldots, l\}$

$$r_{j_1,\ldots,j_l}^{(n)} \in \mathcal{F}[g_1,\ldots,g_K]$$

(iv) **compositions** of elements of the set belong to the set, that is, for any $h_1: \{0,1\}^n \to \{0,1\}^m$ and $h_2: \{0,1\}^l \to \{0,1\}^n$ we have that

$$h_1, h_2 \in \mathcal{F}[g_1, \dots, g_K] \qquad \Rightarrow \qquad h_1 \circ h_2 \in \mathcal{F}[g_1, \dots, g_K]$$

(v) **cartesian products** of elements of the set belong to the set, that is, for any $h: \{0,1\}^n \to \{0,1\}^m$ and $k: \{0,1\}^p \to \{0,1\}^q$ we have that

$$h, k \in \mathcal{F}[g_1, \ldots, g_K] \qquad \Rightarrow \qquad h \times k \in \mathcal{F}[g_1, \ldots, g_K],$$

where $h \times k : \{0, 1\}^{n+p} \to \{0, 1\}^{m+q}$ with

 $h \times k(x_1, \dots, x_{n+p})$ = $(h(x_1, \dots, x_n)_1, \dots, h(x_1, \dots, x_n)_m, k(x_{n+1}, \dots, x_{n+p})_1, \dots, k(x_{n+1}, \dots, x_{n+p})_q).$ Example of product and composition of gates

 $(\text{ID} \times \text{ID} \times \text{XOR}) \circ (\text{ID} \times \text{ID} \times \text{AND} \times \text{ID}) \circ r_{1,3,2,4,5}^{(5)}$

 \circ (COPY × COPY × ID)(x_1, x_2, x_3)

 $\underbrace{=}_{(5.7)} (\text{ID} \times \text{ID} \times \text{XOR}) \circ (\text{ID} \times \text{ID} \times \text{AND} \times \text{ID}) \circ r_{1,3,2,4,5}^{(5)}(x_1, x_1, x_2, x_2, x_3)$

 $\underbrace{=}_{(5.8)} (\text{ID} \times \text{ID} \times \text{XOR}) \circ (\text{ID} \times \text{ID} \times \text{AND} \times \text{ID})(x_1, x_2, x_1, x_2, x_3)$

$$\underbrace{=}_{(5,4)} (\mathrm{ID} \times \mathrm{ID} \times \mathrm{XOR}) (x_1, x_2, x_1 x_2, x_3)$$

$$\underbrace{=}_{(5.5)} (x_1, x_2, x_1 x_2 \stackrel{2}{\oplus} x_3)$$

= TOF(x_1, x_2, x_3).

Let us see that a single gate can be considered an universal "set". For n=1, n=2 we show that every gate $\{0,1\}^n \rightarrow \{0,1\}$ is a Toffoli "specialization": for n = 1:

$$\begin{split} \mathrm{ID}(x_1) &= x_1 = \mathrm{TOF}_1(x_1, 1, 1) = r_1^{(3)} \circ \mathrm{TOF} \circ p_{1,1;2,3}^{(1)}(x_1) \\ \mathrm{FALSE}(x_1) &= 0 = \mathrm{TOF}_1(0, 0, 0) = r_1^{(3)} \circ \mathrm{TOF} \circ p_{0,0,0;1,2,3}^{(0)}(x_1) \\ \mathrm{TRUE}(x_1) &= 1 = \mathrm{TOF}_1(1, 0, 0) = r_1^{(3)} \circ \mathrm{TOF} \circ p_{1,0,0;12,3}^{(1)}(x_1) \\ \mathrm{NOT}(x_1) &= 1 \stackrel{2}{\oplus} x_1 = \mathrm{TOF}_3(1, 1, x_1) = r_3^{(3)} \circ \mathrm{TOF} \circ p_{1,1;1,2}^{(1)}(x_1) \,. \end{split}$$
 for $n = 2$:

AND
$$(x_1, x_2) = x_1 x_2 = \text{TOF}_3(x_1, x_2, 0) = r_3^{(3)} \circ \text{TOF} \circ p_{0;3}^{(2)}(x_1, x_2)$$

XOR $(x_1, x_2) = x_1 \stackrel{2}{\oplus} x_2 = \text{TOF}_3(1, x_1, x_2) = r_3^{(3)} \circ \text{TOF} \circ p_{1;1}^{(2)}(x_1, x_2)$

In the book it is proven by induction that if the gates $\{0,1\}^{n-1} \to \{0,1\}$ are Toffoli representable, then this hold for the gates $\{0,1\}^n \to \{0,1\}$ as well.

With Toffoli gates **only** one can build any classical circuit!

	Classical	Quantum
State	$\{0,1\}^n$	$\psi \in {}^{\P} H^{\otimes n}$
Gate	$f: \{0,1\}^n \to \{0,1\}^m$	$U:^{\P} H^{\otimes n} \to^{\P} H^{\otimes n}$

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states.

	Classical	Quantum
State	$\{0,1\}^n$	$\psi \in {}^{\P} H^{\otimes n}$
Gate	$f: \{0,1\}^n \to \{0,1\}^m$	$U:^{\P} H^{\otimes n} \to^{\P} H^{\otimes n}$

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states. • U is unitary! $(UU^T = I)$

	Classical	Quantum
State	$\{0,1\}^n$	$\psi \in {}^{\P} H^{\otimes n}$
Gate	$f: \{0,1\}^n \to \{0,1\}^m$	$U:^{\P} H^{\otimes n} \to^{\P} H^{\otimes n}$

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states.

- U is unitary! $(UU^T = I)$
- ▶ ¶*H* is a two dimensional Hilbert (qubit) space; ¶*H*^{⊗n} is a 2n dimensional Hilbert space

	Classical	Quantum
State	$\{0,1\}^n$	$\psi \in {}^{\P} H^{\otimes n}$
Gate	$f: \{0,1\}^n \to \{0,1\}^m$	$U:^{\P} H^{\otimes n} \to^{\P} H^{\otimes n}$

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states.

- U is unitary! $(UU^T = I)$
- ▶ ¶*H* is a two dimensional Hilbert (qubit) space; ¶*H*^{⊗n} is a 2n dimensional Hilbert space
- ▶ the state is read (measured) by a non-unitary operator.

	Name	Symbol	Operator	Matrix in basis $\{ 0\rangle, 1\rangle\}$
	Identity		1	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
	Phase-factor		$M(\alpha) := \mathrm{e}^{\mathrm{i}\alpha}1$	$\left(\begin{array}{cc} e^{i\alpha} & 0 \\ 0 & e^{i\alpha} \end{array} \right)$
	Phase-shift	$P(\alpha)$ $[0]$	$P(\alpha) :=$ $\langle 0 + e^{i\alpha} 1\rangle \langle 1 $	$\left(\begin{array}{cc} 1 & 0 \\ 0 & e^{i\alpha} \end{array}\right)$
	PAULI-X or Q-NOT	X	$X := \sigma_x$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
	PAULI-Y	Y	$Y := \sigma_y$	$\left(\begin{matrix} 0 & -i \\ i & 0 \end{matrix} \right)$
	PAULI-Z	Z	$Z := \sigma_z$	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
	HADAMARD	— Н	$H := rac{\sigma_x + \sigma_z}{\sqrt{2}}$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$
	Spin-rotation by angle α around $\hat{\mathbf{n}}$	$-D_{\hat{\mathbf{n}}}(\alpha)$	$D_{\hat{\mathbf{n}}}(\alpha) \begin{pmatrix} \cos \frac{lpha}{2} \\ -\mathrm{i}\sin lpha \end{pmatrix}$	$ \begin{array}{l} -\operatorname{i}\sin\frac{\alpha}{2}n_z & -\operatorname{i}\sin\frac{\alpha}{2}(n_x - \operatorname{i} n_y) \\ \frac{\alpha}{2}(n_x + \operatorname{i} n_y) & \cos\frac{\alpha}{2} + \operatorname{i}\sin\frac{\alpha}{2}n_z \end{array} \right) $
	Arbitrary unary gate	V	V unitary	$\left(\begin{array}{c} \nu_{00} \ \nu_{01} \\ \nu_{10} \ \nu_{11} \end{array}\right)$
unary	Measurement of observable A		Not a gate, b transformatic to an eigensta and delivery	at a non-unitary on of the input-state ate of A of measured value λ

- X (NOT)-gate: $X = \sigma_x$

$$\sigma_{x}|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$\sigma_{x}|1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

- X (NOT)-gate: $X=\sigma_x$

$$\sigma_{x}|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$\sigma_{x}|1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

It is also denoted by \oplus .

- X (NOT)-gate: $X=\sigma_x$

$$\sigma_{x}|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$\sigma_{x}|1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

It is also denoted by \oplus .

- Hadamard gate ${\cal H}$

$$\begin{split} H|0\rangle &= \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\ H|1\rangle &= \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ H|x_j\rangle &= \frac{|0\rangle + \mathrm{e}^{\pi\mathrm{i}x_j}|1\rangle}{\sqrt{2}} \end{split}$$

https://qiskit.org/textbook/ch-states/ single-qubit-gates.html

binary 1/2

- ▶ dots and circles mean condition;
- ► the gates connected to dots (•) will apply only if the qubit to be transformed is in state |1⟩. If the input qubit is in state |0⟩ then the gate do not apply and the state remains unchanged.
- ► the gates connected to circles (∘) will apply only if the qubit to be transformed is in state |0⟩.

$$\begin{split} \blacktriangleright \Lambda : (\cdot) \text{ is called controlled gate defined as} \\ \Lambda_{|b\rangle}^{|a\rangle}(V) &:= \mathbf{1}^{\otimes n+1} + |a\rangle\langle a| \otimes (V-\mathbf{1}) \otimes |b\rangle\langle b| \\ &= \mathbf{1}^{\otimes n+1} + \bigotimes_{j=n_a-1}^{0} |a_j\rangle\langle a_j| \otimes (V-\mathbf{1}) \otimes \bigotimes_{j=n_b-1}^{0} |b_j\rangle\langle b_j| \end{split}$$

binary 2/2

Definition 5.8 For $U_j \in \mathcal{U}(\mathfrak{M}^{\otimes n_j})$ with $j \in \{1, ..., K\}$ we denote by $\mathcal{F}[U_1, ..., U_K]$ the set of gates which can be constructed with the $U_1, ..., U_K$. This set is defined by the following rules:

(i)

$$U_1,\ldots,U_K\in\mathfrak{F}[U_1,\ldots,U_K]$$

(ii) for any $n \in \mathbb{N}$

$$\mathbf{1}^{\otimes n} \in \mathcal{F}[U_1,\ldots,U_K]$$

(iii) for any $V_1, V_2 \in \mathcal{U}(\mathbb{H}^{\otimes n})$ we have

$$V_1, V_2 \in \mathcal{F}[U_1, \dots, U_K] \qquad \Rightarrow \qquad V_1 V_2 \in \mathcal{F}[U_1, \dots, U_K]$$

(iv) for any $V_i \in \mathcal{U}(\mathbb{H}^{\otimes n_i})$ with $i \in \{1, 2\}$ we have

$$V_1, V_2 \in \mathcal{F}[U_1, \ldots, U_K] \qquad \Rightarrow \qquad V_1 \otimes V_2 \in \mathcal{F}[U_1, \ldots, U_K].$$

A set of quantum gates $U = \{U_1, \dots, U_J\}$ is called **universal** if any quantum gate U can be constructed with gates from U, that is, if for every quantum gate U

$$U \in \mathcal{F}[U_1, \ldots, U_J]$$
 for $U_1, \ldots, U_J \in U$.

When acting on a system in the state $\rho \in D(\mathbb{H})$ the gate U transforms it to a new state $U\rho U^*$.

THANK YOU FOR YOUR ATTENTION!

БЛАГОДАРЯ ЗА ВНИМАНИЕТО!