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Classical gates. Definition. 4

“Elementary” classical (logical) gates are the maps
f : {0, 1}n → {0, 1}m which can be grouped and aligned to
construct more complex mappings.

A particlar set {0, 1}n is called a state.
So the classical computational process is the transformation of
one “classical” state to another “classical” state.
A classical gate is reversible if from its output it can recreate
its input state uniquely, i.e. it’s a bijection.
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Unary, binary and ternary classical gates 5

I NOT : {0, 1} → {0, 1} : x→ (1 + x) mod 2 ≡ (1⊕2 x)
where the notation u⊕2 v = (u+ v) mod 2 is used.
x̄ is a shorthand for NOT(x)

I AND : {0, 1}2 → {0, 1} : (x1, x2)→ x1.x2

I OR : {0, 1}2 → {0, 1} : (x1, x2)→ x1 ⊕2 x2 ⊕2 x1.x2

I XOR : {0, 1}2 → {0, 1} : (x1, x2)→ x1 ⊕2 x2

I Toffoli1 : {0, 1}3 → {0, 1}3 :
(x1, x2, x3)→ (x1, x2, x1.x2 ⊕2 x3)

1after Tommaso Toffoli
https://en.wikipedia.org/wiki/Tommaso_Toffoli
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DeMorgan rules 6

I A.B = Ā+ B̄

I A+B = Ā.B̄

“BREAK THE LINE, CHANGE THE SIGN!”
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I A+B = Ā.B̄
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Homework 7

Can you prove that
I (x.ȳ).(ȳ.z) = x.ȳ + y.z̄

I (x̄+ z)(x.y) = x.z̄ + x.y ?





Additional (trivial) gates 9



Universal set of gates 10

A set F of gates g1, . . . , gL is universal if any gate can be
expressed as a function of F only.
F is constructed using special rules (it is not only a combination
of gates). See the following two slides 2.
A series of connected gates is called a classical circuit.

2from Wolfgang Scherer - Mathematics Of Quantum Computing. An
Introduction, Springer (2019)







Example of product and composition of gates 13



Toffoli gate is universal and reversible 14

Let us see that a single gate can be considered an universal
“set”. For n=1, n=2 we show that every gate {0, 1}n → {0, 1} is
a Toffoli “specialization”:
for n = 1:

for n = 2:

In the book it is proven by induction that if the gates
{0, 1}n−1 → {0, 1} are Toffoli representable, then this hold for
the gates {0, 1}n → {0, 1} as well.



Toffoli gate is universal and reversible 15

With Toffoli gates only one can build any classical circuit!



Quantum gates and circuits

Classical Quantum
State {0, 1}n ψ ∈¶ H⊗n
Gate f : {0, 1}n → {0, 1}m U :¶ H⊗n →¶ H⊗n

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states.

I U is unitary! (UUT = I)
I ¶H is a two dimensional Hilbert (qubit) space; ¶H⊗n is a

2n dimensional Hilbert space
I the state is read (measured) by a non-unitary operator.
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unary



- X (NOT)-gate: X = σx

It is also denoted by ⊕.
- Hadamard gate H

https://qiskit.org/textbook/ch-states/
single-qubit-gates.html

https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html


- X (NOT)-gate: X = σx

It is also denoted by ⊕.

- Hadamard gate H

https://qiskit.org/textbook/ch-states/
single-qubit-gates.html

https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html


- X (NOT)-gate: X = σx

It is also denoted by ⊕.
- Hadamard gate H

https://qiskit.org/textbook/ch-states/
single-qubit-gates.html

https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html


binary 1/2



I dots and circles mean condition;
I the gates connected to dots ( • ) will apply only if the

qubit to be transformed is in state |1〉. If the input qubit is
in state |0〉 then the gate do not apply and the state
remains unchanged.

I the gates connected to circles ( ◦ ) will apply only if the
qubit to be transformed is in state |0〉.

I Λ : (·) is called controlled gate defined as



binary 2/2



Universal set of quantum gates 22





T H A N K Y O U F O R

Y O U R A T T E N T I O N!

Б Л А Г О Д А Р Я З А

В Н И М А Н И Е Т О !
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