Lecture 8

CLASSICAL AND QUANTUM GATES
AND CIRCUITS

of the course “Fundamentals of Quantum Computing*

Stoyan Mishev

:

f\; INSTITUTE for ADVANCED . NEW
‘é BULGARIAN
PHYSICAL STUDIES U BULGARIAN

May 13, 2022



[Lran

Classical gates and circuits

Quantum gates and circuits




Classical gates and circuits
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Classical gates. Definition.

—

“FElementary” classical (logical) gates are the maps
f:{0,1}" — {0,1}™ which can be grouped and aligned to
construct more complex mappings.
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Classical gates. Definition.

—

“FElementary” classical (logical) gates are the maps
f:{0,1}" — {0,1}™ which can be grouped and aligned to
construct more complex mappings.

A particlar set {0,1}" is called a state.

So the classical computational process is the transformation of
one “classical” state to another “classical” state.

A classical gate is reversible if from its output it can recreate
its input state uniquely, i.e. it’s a bijection.




Unary, binary and ternary classical gates

» NOT : {0,1} = {0,1} : z — (1 4+ ) mod 2 = (1 &% x)
where the notation u @? v = (u + v) mod 2 is used.
Z is a shorthand for NOT(x)

Lafter Tommaso Toffoli

https://en.wikipedia.org/wiki/Tommaso_Toffoli
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Unary, binary and ternary classical gates

» NOT : {0,1} = {0,1} : z — (1 4+ ) mod 2 = (1 &% x)
where the notation u @? v = (u + v) mod 2 is used.
Z is a shorthand for NOT(x)

> AND : {0,1}* — {0,1} : (21, 22) — 21.29
> OR : {0,1}* — {0,1} : (z1,20) = 21 &% 20 &% 21.29
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Unary, binary and ternary classical gates

» NOT : {0,1} = {0,1} : z — (1 4+ ) mod 2 = (1 &% x)
where the notation u @? v = (u + v) mod 2 is used.
Z is a shorthand for NOT(x)

> AND : {0,1}* — {0,1} : (21, 22) — 21.29
> OR : {0,1}* — {0,1} : (z1,20) = 21 &% 20 &% 21.29
» XOR : {0,1}% = {0,1} : (21, 22) — 1 ®% 29

Lafter Tommaso Toffoli
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Unary, binary and ternary classical gates

» NOT : {0,1} = {0,1} : z — (1 4+ ) mod 2 = (1 &% x)
where the notation u @? v = (u + v) mod 2 is used.
Z is a shorthand for NOT(x)

AND : {0,1}% = {0,1} : (21, 22) — 1.2

OR : {0, 1}2 — 0,1} : (21,72) = 71 D? 22 B? 7179
XOR. : {0,1}* = {0,1} : (@1, 20) = z1 B2z
Toffoli! : {0,1}* — {0,1}" :

(71,22, 3) = (21, T2, 1.72 B 73)

vvyyypy

Lafter Tommaso Toffoli

https://en.wikipedia.org/wiki/Tommaso_Toffoli


https://en.wikipedia.org/wiki/Tommaso_Toffoli

DeMorgan rules

—



DeMorgan rules

—

A-B A+B

A
o A ¥ " g]iD——né
B—>—
A |B |AB|AB A|B|A|B |A+B

0|0 0 0|01 1

0|1 0 0|1 1 0

1 0 0 1 0|01

» AB = A—i—B 101 1 1]1(0]0



DeMorgan rules
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DeMorgan rules

—

» A+ B=A.B

Proof 5o ~ B
-B A+B
A
A A-B _ A—>— -
e BT AB
B—>—
A |B |AB|AB A|B|A|B |A+B
0|0 0 0|01 1
o1 0 o|1]|1]0
110 0 110]0]1
101 1 1/1]0]0
Proof A+B A-B
A A o
e L _ AB
B B
A |B|A+B|A+B A|B|A|B|AB
oo O oo |11
01| 1 o|1|1]0
10 1 1/0]01
101] 1 1/1]0]o0




DeMorgan rules

—

Proof 75

» A+ B=A.B

“BREAK THE LINE, CHANGE THE SIGN!”

ala|lo|o|®

Proof
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Homework

—

Can you prove that
> (2.y).(g2) =2y +y.Z
> (T4 2)(TY)=zzZ+zy?
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Additional !trivial) gates

ID:{0,1} — {0,1}
(x1) — ID(xy) :=x)

FALSE: {0,1} — {0.1}

(x;) —— FALSE(x;):=0
TRUE: {0,1} — {0.1}

(x;) —— TRUE(x;) =1
copYM: {0,1} — {0,1}?

(x;) —— COPY(xy) := (x1,x1)




Universal set of gates 10

—

A set F of gates g1,...,gr is universal if any gate can be
expressed as a function of F only.

F is constructed using special rules (it is not only a combination
of gates). See the following two slides 2.

A series of connected gates is called a classical circuit.

2from Wolfgang Scherer - Mathematics Of Quantum Computing. An
Introduction, Springer (2019)



(i1) padding operations of the form

(n) .
Py yiidteit - {0" l}n - {0’ I}HH

which insert pre-determined bit values yy, ..., v € {0, 1} at pre-determined

slots ji,....j; € {1,...,n+1} are elements of the set, that is, for any

LneN,yy, ...,y € {0,1} and pairwise distinctj,....j; € {1,....,n+1}

1)
p_E"l _____ VI s J1 Gg[gh-g[(}

(ii1) restriction and/or re-ordering operations

(n) . [} )
T 101} —1{0,1} (5.8)






Example of product and composition of gates

(ID x ID x XOR) o (ID x ID x AND x ID) o), , 5
o (COPY x COPY x ID) (x1,x2,x3)
(ID x ID x XOR) o (ID x ID x AND x ID) o ), , 5(x1,x1,x2,%2,x3)

~
N
'\.<H

(ID x ID x XOR) o (ID x ID x AND x ID) (x1, X2, X1,X2,X3)

P
T

(ID x ID x XOR) (x1, X2, X1X2,X3)

{H

(5.

)
&

2
= (X1,X2,x100 B x3)
(5.5)

= TOF(x1.x», .
(X1,X2,X3)

(5.6)

13



Toffoli gate is universal and reversible 14

—

Let us see that a single gate can be considered an universal
“set”. For n—=1, n=2 we show that every gate {0,1}" — {0,1} is
a Toffoli “specialization”

for n = 1:

ID(x;) = x; = TOF, (x. 1, 1) = /")
)

oTOFop!'), 1(x))

FALSE(x;) = 0 = TOF, (0.0,0) = ) o TOF o p{) | 1(x))
TRUE(x;) = | = TOF|(1.0,0) = r\*) o TOF o p{") | 1, 5(x1)
NOT(x) = 1 & x; = TOFs (1. 1.x7) = 1 e TOFop!)  (x)).

for n = 2:
AND(x;,12) = 510, = TOF; (x1,2,0) = 1" e TOF 0 p{ (x1,2)
XOR (x1,13) = 11 0 x> = TOFs (1, x/.3) = AV o TOFop?) (x1,12)

In the book it is proven by induction that if the gates
{0,131 = {0,1} are Toffoli representable, then this hold for
the gates {0,1}" — {0,1} as well.



Toffoli gate is universal and reversible

—

With Toffoli gates only one can build any classical circuit!

15



Quantum gates and circuits

Classical ‘ Quantum

State {0,1}" ¢ eV gon
Gate | f:{0,1}" — {0,1}™ | U .Y g®» Y gon

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states.
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Quantum gates and circuits

Classical ‘ Quantum
State {0,1}" ¢ eV gon
Gate | f:{0,1}" — {0,1}™ | U .Y g®» Y gon

Classical and quantum computational processes

Quantum gates transform (multi-)qubit states.
» U is unitary! (UUT = 1)
» 9/ is a two dimensional Hilbert (qubit) space; TH®" is a
2n dimensional Hilbert space

» the state is read (measured) by a non-unitary operator.



unary

Matrix in basis

Name Symbol Operator {10}, 11)}
Identit _— 1 10
: (b7)

Phase-factor M(a) :=¢'*1

Phase-shift P(at) [0)(0] + e 1) (1]
)

PAULIX Yo (“ ‘)
or Q-NOT o 10
PAULLY : (
PAULI-Z (

HADAMARD

Spin-rotation

a a af, \
€0s 3 — isin 5n; isin 3 (ne —1ny)
anol N 2 Pk 7\ v)
by .mgls: a Di(e) (—mm—ﬂnx “+iny) cos§ +isin$n, )
around i : “ -
Arbi V uni Voo Vo1
rbitrary unitary Vio Vi1

unary gate

Not a gate, but a non-unitary
transformation of the input-state
to an eigenstate of A

and delivery of measured value A

Measurement
of observable A



- X (NOT)-gate: X = o,

o= ()0~ ()
o= ()0~ () -


https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html

- X (NOT)-gate: X = o,

o= ()0~ ()
o= ()0~ () -

It is also denoted by .


https://qiskit.org/textbook/ch-states/single-qubit-gates.html
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- X (NOT)-gate: X = o,

o= ()0~ ()
o= ()0~ () -

It is also denoted by .
- Hadamard gate H

_ 10+
H|0) = 7
-1
H\l)- \/5
| 1oy +emun)
Hg) = 22

https://qiskit.org/textbook/ch-states/
single-qubit-gates.html


https://qiskit.org/textbook/ch-states/single-qubit-gates.html
https://qiskit.org/textbook/ch-states/single-qubit-gates.html

binary 1/2

Matrix in computational basis
{10)2 = |00),|1)2 = |01}

Name Symbol Operator [2)2 =10}, [3)> = [11)}
Controlled ——e—— A'(X) 1000
NOT = 0100
(C-NOT) 10y(0] @1 0001
W + 0010
- M(rex
C-NOT with o A (X) 1000
control in = 0001
2. gbit [ S 120)(0| 0010
+ 0100
X |1)(1]
HEA(X)H®?
Controlled Al (M(a)) 100 0
phase- = 010 0
multiplication M(a) |0y{0] 21 00e* 0
+ 00 0 e*
[ (1 @e*1




dots and circles mean condition;

the gates connected to dots ( e ) will apply only if the
qubit to be transformed is in state |1). If the input qubit is
in state |0) then the gate do not apply and the state
remains unchanged.

the gates connected to circles ( o ) will apply only if the
qubit to be transformed is in state |0).
A : (+) is called controlled gate defined as

AR V) 1= 19" 4 |a)(a| @ (V = 1) @ [b) Bl
0
=17+ Q) aj)(aj|® (V-1) ® |b;) (b

Jj=na—1 Jj=np—1



Matrix in computational basis
{10) = [00),[1)* = J01)

Name Symbol Operator [2)2 = |10},3)2 = [11)}
C-NOT A% (x) 0100
controlled = 1000
with 0) (1®1 0010
+ 0001
[0y(0] @ X
(xenalkx) (xer)
Swap S 1000
= 0010
100){00| + [11)(11 0100
T 0001
01)(10] + [10)(01
AlX) A (0 AN (X)
Controlled Al(V) 100 0
v = 010 0
v [0)(0]@ 1 00 voo vou
+ 00vigvy

(1|ev

(P(a)@A)AN(X) (1@ B)AN(X) (1&C)
mit V = M(a)AXBXC
und 1 =ABC




Universal set of quantum gates

—

Definition 5.8 For U; € U(H™%) withj € {1,...,K} we denote by F[U ...,
Uk] the set of gates which can be constructed with the Uy, ...,Ug. This set is
defined by the following rules:
@

Uy,..., Uk € S'F[Ul <<<< U[(]

(i) foranyneN

(iii) for any V,V2 € U(TH™") we have
ViVae F[U....Ud =  ViaeTFU...,Ux]
(iv) forany V; € U(H*") with i € {1,2} we have
ViV, eF[Uy,...U =  ViewedU,...,Ukl.

A set of quantum gates U = {Uy,...,U, } is called universal if any quantum
gate U can be constructed with gates from U, that is, if for every quantum

gate U
UG?[U1,4,4,U]] forUy,..., U;eU.

When acting on a system in the state p € D(H) the gate U transforms it to a
new state UpU™.



Input Output
c !H@n U c 'WH‘XH
Wa1) [@n 1)
® Us ®
® U, &
1) ¢1)
& U, ®
W) [%0)




THANK YOU FOR

YOUR ATTENTION!

BJIATOJTAPS 3A
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