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Lax representations:

Ψξ =
U1(ξ, η)

λ− a
Ψ(ξ, η, λ), Ψη =

V1(ξ, η)

λ+a
Ψ(ξ, η, λ),

Impose Z2-reduction:

U†(x, t, λ) = −U(x, t, λ∗), V †(x, t, λ) = −V (x, t, λ∗).

U1(ξ, η) = −i~φ~φ † = −iφJ0φ
†, V1(ξ, η) = −i ~ψ ~ψ † = −iψJ0ψ

†,

Change:
U1 → U1 = −iφJφ† V1 → V1 = −iψJψ†.

J0 = diag (1, 0, 0, . . . , 0)→ J = J0 −
1

N
11N =

1

N
diag (N − 1,−1,−1, . . . ,−1).

Compatibility condition:

U1,η

λ− a
− V1,ξ

λ+ a
+

[U1, V1]

(λ− a)(λ+ a)
= 0.
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Indeed:

φJ0φ
† − φJφ† = φ(J0 − J)φ† =

1

N
φ11Nφ

† =
1

N
11N .

ψJ0ψ
† − ψJψ† = ψ(J0 − J)ψ† =

1

N
ψ11Nψ

† =
1

N
11N .

Change also:
ξ → x, η → t.

The scattering problem for L

L : iΨx =
U0(x, t)

λ− a
Ψ(x, t, λ), M : iΨt =

V0(x, t)

λ+ a
Ψ(x, t, λ),

U0 = φJφ†, V0 = ψJψ†.

In fact there is indeterminacy in the second operator:

M : iΨt =
V0(x, t)

λ+ a
Ψ(x, t, λ)−Ψ(x, t, λ)C(λ),
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where C(λ) will be determined below.
Boundary conditions, i.e. the limits of U0 and V0 for x → ±∞. For the

spinor models the natural boundary conditions are

lim
x→±∞

ψ(x, t) = 11N , lim
x→±∞

φ(x, t) = 11N , lim
x→±∞

U0(x) = J, lim
x→±∞

V0(x) = J,

Asymptotic solutions:

iΨ0,x =
J

λ− a
Ψ0(x, λ), Ψ0(x, λ) = exp

(
−iJx
λ− a

)
.

Jost solutions:

lim
x→∞

Ψ(x, t, λ)Ψ−1
0 (x, λ) = 11, lim

x→−∞
Φ(x, t)Ψ−1

0 (x, λ) = 11.

Integral equations for Φ(x, t, λ) and Ψ(x, t, λ):
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Scattering matrix and its t-dependence

Φ(x, t, λ) = Ψ(x, t, λ)T (t, λ), T (t, λ) =

(
a−(λ) −~b−,T (λ, t)
~b+(λ, t) a+(λ)

)
.

Consider the limit for x→ −∞:

i
∂Φ

∂t
=

V0

λ+ a
Φ(x, t, λ)− Φ(x, t, λ)C(λ) x→ −∞,

⇒ i
∂Ψ0

∂t
=

J

λ+ a
Ψ0(x, λ)−Ψ0(x, λ)C(λ), C(λ) =

J

λ+ a
.

because ∂Ψ0

∂t = 0! Next consider the limit for x→∞ with Φ = ΨT :

⇒ iΨ0(x, λ)
∂(T )

∂t
=

J

λ+ a
Ψ0(x, λ)T (t, λ)−Ψ0(x, λ)T (t, λ)C(λ).

Finally:

i
∂T

∂t
=

[
J

λ+ a
, T (t, λ)

]
.
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In components we get:

∂a−(λ)

∂t
= 0,

∂a+(λ)

∂t
= 0, i

∂~b−

∂t
=

2~b−(λ, t)

λ+ a
, i

∂~b+

∂t
= −2~b+(λ, t)

λ+ a
,

Thus a−(λ) and a+(λ): i) are analytic functions of λ for Imλ < 0 and Imλ >
0; ii) provide generating functionals of conservation laws for the spinor models.
Usually for other models we use:

ln a−(λ) =
∞∑
k=1

Ikλ
−k;

∂Ik
∂t

= 0.

and Ik come out to have densities, which are local in the dynamical variables;
besides Ik are in involution, i.e. the Poisson brackets {Ik, Im} = 0 In this case

we need to check if Ik will be local or nonlocal in ~φ and ~ψ.
Besides we have a whole (N−1)×(N−1) matrix a+(λ) that also generates

integrals of motion. Each matrix element of a+(λ) generates conservation
laws, but in general we can not expect neither local densities, nor vanishing
Poisson brackets between these integrals.
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Idea for solving the spinor models

~φ(x, t = 0) −→ L0 L|t>0 −→ ~φ(x, t)

I

y xIII

T (0, λ)
II−→ T (t, λ)

Jost solutions – integral equations

Ψ(x, λ) = Ψ0(x, λ)− i

λ− a

∫ x

∞
dy Ψ0(x− y, λ)(U0(y)− J)Ψ(y, λ),

Φ(x, λ) = Ψ0(x, λ)− i

λ− a

∫ x

−∞
dy Ψ0(x− y, λ)(U0(y)− J)Φ(y, λ),

Ψ0(x− y, λ) = exp

(
− i(x− y)

λ− a

(
N − 1

N
,− 1

N
,− 1

N
, . . . ,− 1

N

))
Ψ0(x− y, λ) = exp

(
Im

(
(x− y)

N(λ− a)

)
(N − 1,−1,−1, . . . ,−1) + oscillating

)
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Assume, that limx→±∞ U0(x) = J . Besides:
If Im (λ− a) > 0, then Im 1

λ−a < 0. Then:

• If Im (λ − a) = 0, then Ψ0(x − y, λ) oscillates and Ψ(x, λ) and Φ(x, λ)
are well defined!

• Consider Ψ(x, λ): we have y > x and therefore Ψ0;11(x − y, λ) de-
creases for Im 1

λ−a > 0; Ψ0;22(x − y, λ), . . . ,Ψ0;NN (x − y, λ) decrease

for Im 1
λ−a < 0. Therefore analytic extensions for the columns are pos-

sible:

Ψ(x, λ) =
(

Ψ+
(1)(x, λ),Ψ−(2)(x, λ), . . . ,Ψ−(N)(x, λ)

)
=
(

Ψ+
(1)(x, λ), ~Ψ−(x, λ)

)
• Consider Φ(x, λ): we have y < x and now the situation is opposite:

Φ(x, λ) =
(

Φ−(1)(x, λ),Φ+
(2)(x, λ), . . . ,Φ+

(N)(x, λ)
)

=
(

Φ−(1)(x, λ), ~Φ+(x, λ)
)

0-7



We will need also the inverse of the Jost solutions:

Ψ̂ =


Ψ̂−1
Ψ̂+

1
...

Ψ̂+
N

 , Φ̂ =


Φ̂+

1

Φ̂−1
...

Φ̂−N

 ,

and the inverse of the scattering matrix:

Φ̂ = T̂ Ψ̂, T̂ =

(
c+ ~d+,T

−~d− c−

)

Here c+ and c−, just like a− and a+, are analytic functions of λ for Imλ > 0
and Imλ < 0. They also generate integrals of motion.
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Fundamental analytic solutions

It is easy: if

Ψ(x, λ) =
(

Ψ+
(1)(x, λ),Ψ−(2)(x, λ), . . . ,Ψ−(N)(x, λ)

)
Φ(x, λ) =

(
Φ−(1)(x, λ),Φ+

(2)(x, λ), . . . ,Φ+
(N)(x, λ)

)
then

χ+(x, λ) =
(

Ψ+
(1)(x, λ),Φ+

(2)(x, λ), . . . ,Φ+
(N)(x, λ)

)
χ−(x, λ) =

(
Φ−(1)(x, λ),Ψ−(2)(x, λ), . . . ,Ψ−(N)(x, λ)

)
Any two fundamental solutions are linearly related. Therefore:

(
Φ−(1)(x, λ), ~Φ+(x, λ)

)
=
(

Ψ+
(1)(x, λ), ~Ψ−(x, λ)

)(
a− −~b−,T
~b+ a+

)
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(
Ψ+

(1)(x, λ), ~Ψ−(x, λ)
)

=
(

Φ−(1)(x, λ), ~Φ+(x, λ)
)( c+ ~d+,T

−~d− c−

)

Φ−(1) = Ψ+
(1)a

− + ~Ψ−~b+, Ψ+
(1) = Φ−(1)c

+ − ~Φ+~d−,

~Φ+ = −Ψ+
(1)
~b−,T + ~Ψ−a+, ~Ψ− = Φ−(1)

~d+,T + ~Φ+c−,

Φ−(1)

a−
= Ψ+

(1) + ~Ψ−
~b+

a−
, ~Φ+â+ = −Ψ+

(1)
~b−,T â+ + ~Ψ−,

χ+(x, λ) =
(

Ψ+
(1),

~Φ+â+
)

=
(

Ψ+
(1),

~Ψ−
)(

1 −~b−,T â+

0 11

)
= Ψ(x, t, λ)S+(t, λ),

χ−(x, λ) =

(
Φ−(1)

a−
, ~Ψ−

)
=
(

Ψ+
(1),

~Ψ−
)( 1 0

~b+

a− 11

)
= Ψ(x, t, λ)S−(t, λ),
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χ+(x, λ) = χ−(x, λ)G0(t, λ), G0(t, λ) = Ŝ−(t, λ)S+(λ), λ ∈ R

G0(t, λ) =

(
1 0

−~b
+

a− 11

)(
1 −~b−,T â+

0 11

)
.

Remember: χ±(x, λ) satisfy the equation:

i
∂χ±

∂x
=
U0(x)

λ− a
χ±(x, λ). (1)

The direct scattering problem for L (1):
Let U0(x)−J be smooth function of x (Schwartz-type). Given U0(x) construct
the scattering matrix T (λ).

Minimal set of scattering data

T1 ≡ {~ρ+,T (t, λ) = ~b−,T â+, ~ρ−(t, λ) =
~b+

a−
, λ ∈ R}
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~ρ±(t, λ) – reflection coefficients.
Theorem T1 allows one to reconstruct both the full scattering matrix

T (t, λ) and the corresponding potential U0(x, t).
The inverse scattering problem for L (1):

Given the scattering matrix T (λ) recover U0(x).
The inverse scattering problem for L is equivalent to the following

Riemann–Hilbert problem

Introduce new fundamental analytic solutions:

ξ±(x, t, λ) = χ±(x, λ)Ψ̂0(x, λ).

Advantage: canonical normalization. If the Lax operator depends polynomi-
ally on λ people choose:

lim
λ→∞

ξ±(x, t, λ) = 11.

0-12



In our case we choose different normalization, namely:

lim
λ→a

ξ±(x, t, λ) = 11, a ∈ R.

On the real axis of the complex λ-plane we have:

ξ+(x, λ) = ξ−(x, λ)G(x, t, λ), G(x, t, λ) = Ψ0(x, λ)G0(t, λ)Ψ−1
0 (x, λ).

(2)

Riemann-Hilbert problem: Given the sewing function Ψ0(x, λ) for
λ ∈ R construct the fundamental analytic solutions ξ+(x, λ) analytic for
λ ∈ C+ and ξ−(x, λ) analytic for λ ∈ C− such that they satisfy the canonical
normalization and eq. (2).

Remember: ξ±(x, λ) satisfy the equation:

i
∂ξ±

∂x
=
U0(x)

λ− a
ξ±(x, λ)− ξ±(x, λ)

J

λ− a
. (3)

If we find the solution of the Riemann-Hilbert problem, the we can immediately
find also U0(x). Multiply eq. (3) by λ− a and by ξ̂±(x, λ) on the right, then
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take the limit λ→ a:

lim
λ→a

: i(λ− a)
∂ξ±

∂x
ξ̂±(x, λ) = U0(x)− ξ±Jξ̂±(x, λ),

U0(x) = lim
λ→a

(
ξ±Jξ̂±(x, λ)− i(λ− a)

∂ξ±

∂x
ξ̂±(x, λ)

)
= J − i lim

λ→a
(λ− a)

(
∂ξ±

∂x
ξ̂±(x, λ)

)
.

(4)
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λ

ξ+(x, λ)

×
a

ξ−(x, λ)
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