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The inverse scattering problem for L is equivalent to the following

Riemann–Hilbert problem

Introduce new fundamental analytic solutions:

ξ±(x, t, λ) = χ±(x, λ)Ψ̂0(x, λ).

Advantage: canonical normalization. If the Lax operator depends polynomi-
ally on λ people choose:

lim
λ→∞

ξ±(x, t, λ) = 11.

In our case we choose different normalization, namely:

lim
λ→a

ξ±(x, t, λ) = 11, a ∈ R.

On the real axis of the complex λ-plane we have:

ξ+(x, λ) = ξ−(x, λ)G(x, t, λ), G(x, t, λ) = Ψ0(x, λ)G0(t, λ)Ψ−10 (x, λ).

(1)
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Riemann-Hilbert problem: Given the sewing function Ψ0(x, λ) for
λ ∈ R construct the fundamental analytic solutions ξ+(x, λ) analytic for
λ ∈ C+ and ξ−(x, λ) analytic for λ ∈ C− such that they satisfy the canonical
normalization and eq. (1).

Remember: ξ±(x, λ) satisfy the equation:

i
∂ξ±

∂x
=
U0(x)

λ− a
ξ±(x, λ)− ξ±(x, λ)

J

λ− a
. (2)

If we find the solution of the Riemann-Hilbert problem, the we can immediately
find also U0(x). Multiply eq. (2) by λ− a and by ξ̂±(x, λ) on the right, then
take the limit λ→ a:

lim
λ→a

: i(λ− a)
∂ξ±

∂x
ξ̂±(x, λ) = U0(x)− ξ±Jξ̂±(x, λ),

U0(x) = lim
λ→a

(
ξ±Jξ̂±(x, λ)− i(λ− a)

∂ξ±

∂x
ξ̂±(x, λ)

)
= J − i lim

λ→a
(λ− a)

(
∂ξ±

∂x
ξ̂±(x, λ)

)
.

(3)
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λ

◦

◦

λ+1

λ−1

ξ+(x, λ)

×
a

ξ−(x, λ)
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Riemann–Hilbert problem – canonical case

Lψ ≡
(
i
∂

∂x
+Q(x, t)− λJ

)
ψ(x, λ) = 0,

Mψ ≡
(
i
∂

∂t
+ V0(x, t) + λV1(x, t)− 2λ2J

)
ψ(x, λ) = 0,

Q(x, t) =

(
0 q(x)

r(x) 0

)
, J =

(
1 0
0 −11

)
,

(4)

where Q(x, t) and J are (n + 1) × (n + 1) matrices with compatible block
structure and V0(x, t), V1(x, t) are expressed in terms of Q and its x-derivative:

V1(x, t) = 2Q(x, t), V0(x, t) = −[Q, ad−1J Q] + 2iad−1J Qx. (5)

adJQ = [J,Q] =

(
0 2q
−2r 0

)
, (adJ)2Q = [J, [J,Q]] = 4Q,

⇒ (adJ)−1 =
1

4
adJ .
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adJ has a kernel B: these are all block-diagonal matrices;

adJB = [J,B] = 0, B =

(
B1 0
0 B2

)
;

adJ has an image R: these are all block-off-diagonal matrices R. adJ can be
inverted on its image:

adJR = [J,R] 6= 0, R =

(
0 R1

R2 0

)
, ad−1J R =

(
0 1

2R1

− 1
2R2 0

)
.

Zakharov and Shabat (1971): scalar NLS n = 1 and g ' su(2);
Manakov (1974): vector NLS n ≥ 2 and g ' su(n);

Numerous physical applications in nonlinear optics, plasma physics, hy-
drodynamics etc. Review paper: VSG ArXive: nlin.SI/0604004.

The compatibility condition is the multicomponent NLS equation

iqt + qxx + 2(q, r)q(x, t) = 0,

−irt + rxx + 2(r, q)r(x, t) = 0.
(6)
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Put r = q† to get vector NLS:

iqt + qxx + 2(q, q†)q(x, t) = 0, (7)

The Riemann-Hilbert problem

Asymptotic Lax operator: Q(x, t)→ 0 for x→ ±∞;

L0 ≡ i
∂ψ0

∂x
− λJψ0(x, λ) = 0, ψ0(x, λ) = e−iλJx.

Jost solutions: lim
x→∞

Ψ(x, λ)eiλJx = 11, lim
x→−∞

Φ(x, λ)eiλJx = 11,

Fundamental analytic solutions They are constructed from the Jost
solutions:

Ψ(x, λ) =
(

Ψ−(1)(x, λ),Ψ+
(2)(x, λ), . . . ,Ψ+

(N)(x, λ)
)

Φ(x, λ) =
(

Φ+
(1)(x, λ),Φ−(2)(x, λ), . . . ,Φ−(N)(x, λ)

)
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χ+(x, λ) =
(

Φ+
(1)(x, λ), ~Ψ+(x, λ)â+

)
χ−(x, λ) =

(
Ψ−(1)(x, λ)/a−(λ), ~Φ−(x, λ)

)
The Jost solutions are linearly related by the scattering matrix T (t, λ):(

Φ−(1)(x, λ), ~Φ+(x, λ)
)

=
(

Ψ+
(1)(x, λ), ~Ψ−(x, λ)

)
T (t, λ)

χ+(x, λ) = χ−(x, λ)G0(λ), λ ∈ R.

Riemann-Hilbert problem:

ξ±(x, λ) = χ±(x, λ)eiλJx.

ξ+(x, λ) = ξ−(x, λ)G(x, λ), λ ∈ R; G(x, λ)⇒ sewing matrix.

lim
λ→∞

ξ±(x, λ) = 11, canonical normalization.

G(x, λ) = e−iλJxG0(λ)eiλJx.
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Definition: ξ±(x, λ) is a regular solution of RHP if det ξ±(x, λ) 6= 0 for all
λ ∈ C±.

Theorem: RHP with canonical normalization has unique regular solution.
Proof Let ξ±1,2(x, λ) be two regular solutions of the same RHP. Then:

ξ+1 (x, λ)ξ̂+2 (x, λ) = ξ−1 (x, λ)G(x, λ)Ĝ(x, λ)ξ̂−2 (x, λ) = ξ−1 (x, λ)ξ̂−2 (x, λ),

lim
λ→∞

ξ+1 (x, λ)ξ̂+2 (x, λ) = 11.

Liouville theorem: if the function F (λ) is analytic for all λ ∈ C and has
no singularities in λ then F (λ) = const .

ξ+1 (x, λ)ξ̂+2 (x, λ) = 11,

i.e.
ξ+1 (x, λ) = ξ+2 (x, λ).
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Equivalence of RHP and Lax representations

Remember:

Lχ±(x, λ) ≡ i∂χ
±

∂x
+ (Q(x)− λJ)χ±(x, λ) = 0,

Lξ±(x, λ) ≡ i∂ξ
±

∂x
+Q(x)ξ±(x, λ)− λ[J, ξ±(x, λ)] = 0,

Theorem [Zakharov, Shabat]. Let ξ±(x, λ) be solution to a RHP with
canonical normalization and G(x, t, λ) such that:

i
dG

dx
− λ[J,G(x, λ)] = 0,

Then

i
dξ±

dx
+Q(x)ξ±(x, λ)− λ[J, ξ±(x, λ)] = 0,

Proof:

g±(x, λ) = i
dξ±

dx
ξ̂±(x, λ) + λξ±(x, λ)Jξ̂±(x, λ).
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g+(x, λ) = i
d(ξ−G)

dx
Ĝξ̂−(x, λ) + λξ−GJĜξ̂−(x, λ)

= i
dξ−

dx
ξ̂−(x, λ) + ξ−

(
i
dG

dx
Ĝ+ λGJĜ(x, λ)

)
ξ̂−(x, λ)

= i
dξ−

dx
ξ̂−(x, λ) + ξ−

(
λ[J,G]Ĝ+ λGJĜ(x, λ)

)
ξ̂−(x, λ)

= i
dξ−

dx
ξ̂−(x, λ) + λξ−Jξ̂−(x, λ)

≡ g−(x, λ), λ ∈ R.

Thus g+(x, λ) = g−(x, λ) is analytic in the whole complex λ-plane except in
the vicinity of λ→∞ where g+(x, λ) tends to λJ . Liouville theorem:

g+(x, λ)− λJ = const

with respect to λ; denote it −q(x) and get:

g+(x, λ)− λJ = −Q(x).
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Q(x) = lim
λ→∞

λ
(
J − ξ±(x, λ)Jξ̂±(x, λ)

)
.

Similarly one treats also the time dependence.

Singular solutions of RHP and the soliton solutions of
NLEE. Dressing method

The one-soliton solutions. Dressing factor u1(x, λ):

ξ±1 (x, λ) = u1(x, λ)ξ±0 (x, λ)u−11−(λ), u1− = lim
x→−∞

u1(x, λ).

ξ±0 (x, λ) = χ±0 (x, λ)eiλJx, ξ±1 (x, λ) = χ±1 (x, λ)eiλJx.

i
dχ±0
dx

+Q0(x)χ±0 (x, λ)− λJχ±0 (x, λ) = 0,

i
dχ±1
dx

+Q1(x)χ±1 (x, λ)− λJχ±1 (x, λ) = 0,
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Thus the dressing factor satisfies:

i
du1
dx

+Q1(x)u1(x, λ)− u1(x, λ)Q0(x)− λ[J, u1(x, λ)] = 0,

Need an anzatz for u. Must be singular in λ.

u1(x, λ) = 11 + (c(λ)− 1)P1(x), c(λ) =
λ− λ+1
λ− λ−1

,

P 2
1 = P1. If rankP1 = 1, then:

P1(x) =
|n1〉〈m1|
〈m1|n1〉

,

Insert into the equation for u1(x, λ) and request that it holds for λ = λ+1 ,
λ = λ−1 and λ → ∞. This allows us to express |n1〉 and 〈m1| in terms of the
regular solution χ0 only.

|n1〉 = χ−01(x, t)|n01〉, 〈m1| = 〈m01|χ̂+
01(x, t), χ±01(x, t) = χ±0 (x, t, λ±1 )
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Q1(x, t) = Q0(x, t)− (λ+1 − λ
−
1 )[J, P1(x, t)].

One-soliton solutions of MNLS eqs. (6):

Q0(x) = 0, Q1(x, t) = −(λ+1 − λ
−
1 )[J, P1(x, t)],

P1(x) =
|n1〉〈m1|
〈m1|n1〉

, |n1〉 = e−i(λ
−
1 x+λ

−
1

2t)J |n10〉, 〈m1| = 〈m10|ei(λ
+
1 x+λ

+
1

2t)J ,

The two-soliton solutions of MNLS (6). Dressing factor u2(x, λ):
Repeat the dressing starting from χ±1 (x, t, λ):

χ±2 (x, t, λ) = u2(x, t, λ)χ±1 (x, t, λ) = u2(x, t, λ)χ±1 (x, t, λ),

Thus second dressing factor satisfies:

i
du2
dx

+Q2(x)u2(x, λ)− u2(x, λ)Q1(x)− λ[J, u2(x, λ)] = 0,

u2(x, λ) = 11 + (c2(λ)− 1)P2(x), c2(λ) =
λ− λ+2
λ− λ−2

, P2(x) =
|n2〉〈m2|
〈m2|n2〉

,
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Now we express |n2〉 and 〈m2| in terms of the regular solution χ±1 only.

|n2〉 = χ−1 (x, t, λ−2 )|n02〉, 〈m2| = 〈m02|χ̂+
1 (x, t, λ+2 ), χ±1 (x, t) = u1(x, t, λ)χ±0 (x, t, λ)

Q2(x, t) = Q1(x, t)− (λ+2 − λ
−
2 )[J, P2(x, t)]

= −(λ+1 − λ
−
1 )[J, P1(x, t)]− (λ+2 − λ

−
2 )[J, P2(x, t)].

In order to obtain the solution of the vector NLS (7) we need to impose
the reduction:

λ−j = (λ+j )∗, 〈m0j | = (|n0j〉)†.

Spectral meaning of the dressing

• Each dressing procedure adds a pair of discrete eigenvalues λ+j and λ−j
to the spectrum of L.

• The projectors Pj project onto the discrete eigen-subspaces of L corre-
sponding to the discrete eigenvalues λ±j . It may be of rank ≥ 1.
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• Obviously the soliton solutions are rational functions of exponentials.

There are alternative methods for N-soliton solutions
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