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The Lax representation for the ZM system

Start with the ZM–system:

i
∂|~ψ〉
∂x

=
1

a

(
|~φ〉〈~φ ∗|S0|~ψ〉 − |~φ ∗〉〈~φ|S0|~ψ〉

)
,

i
∂|~φ〉
∂t

=
1

a

(
|~ψ ∗〉〈~ψ|S0|~φ〉 − |~ψ〉〈~ψ ∗|S0|~φ〉

)
,

It allows Lax representation:

Ψx = U(x, t, λ)Ψ(x, t, λ), Ψt = V (x, t, λ)Ψ(x, t, λ),

U(x, t, λ) =
U1(x, t)

λ− a
, V (x, t, λ) =

V1(x, t)

λ+a
,

U1(x, t) = φHe1φ
−1(x, t), V1(x, t) = ψHe1ψ

−1(x, t),

φ(x, t) ∈ SO(8), ψ(x, t) ∈ SO(8), He1 = diag (1, 0, 0, 0, 0, 0, 0,−1).
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The scattering problem for L

L : iΨx =
U0(x, t)

λ− a
Ψ(x, t, λ), M : iΨt =

V0(x, t)

λ+ a
Ψ(x, t, λ),

U0 = φJφ†, V0 = ψJψ†.

In fact there is indeterminacy in the second operator:

M : iΨt =
V0(x, t)

λ+ a
Ψ(x, t, λ)−Ψ(x, t, λ)C(λ),

where C(λ) will be determined below.
Boundary conditions, i.e. the limits of U0 and V0 for x → ±∞. For the

spinor models the natural boundary conditions are

lim
x→±∞

ψ(x, t) = 11N , lim
x→±∞

φ(x, t) = 11N , lim
x→±∞

U0(x) = J, lim
x→±∞

V0(x) = J,

Asymptotic solutions:

iΨ0,x =
J

λ− a
Ψ0(x, λ), Ψ0(x, λ) = exp

(
−iJx
λ− a

)
.
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Jost solutions:

lim
x→∞

Ψ(x, t, λ)Ψ−1
0 (x, λ) = 11, lim

x→−∞
Φ(x, t)Ψ−1

0 (x, λ) = 11.

and the scattering matrix. Due to the special choice of J and to the fact that
the Jost solutions and the scattering matrix take values in the group SO(N)
we can use the following block-matrix structure of T (λ, t)

T (λ, t) = ψ−1φ(x, t, λ) =

 m−1
~b−T c−1

− ~B+ T22 s0
~B−

c+1 −~b+T s0 m+
1

 , (1)

where ~b±(λ, t) and ~B±(λ, t) are N − 2-component vectors, T22(λ) is a (N −
2)× (N − 2) block and m±1 (λ), c±1 (λ) are scalar functions.

Jost solutions – integral equations

Ψ(x, λ) = Ψ0(x, λ)− i

λ− a

∫ x

∞
dy Ψ0(x− y, λ)(U0(y)− J)Ψ(y, λ),
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Φ(x, λ) = Ψ0(x, λ)− i

λ− a

∫ x

−∞
dy Ψ0(x− y, λ)(U0(y)− J)Φ(y, λ),

Ψ0(x− y, λ) = exp

(
− i(x− y)

λ− a
(1, 0, 0, . . . , 0,−1)

)
Ψ0(x− y, λ) = exp

(
Im

(
(x− y)

λ− a

)
(1, 0, 0, . . . , 0,−1) + oscillating

)
Assume, that limx→±∞ U1(x) = J . If Im (λ − a) > 0, then Im 1

λ−a < 0.
Then:

• If Im (λ − a) = 0, then Ψ0(x − y, λ) oscillates and Ψ(x, λ) and Φ(x, λ)
are well defined!

• Consider Ψ(x, λ): we have y > x and therefore Ψ0;11(x− y, λ) decreases
for Im 1

λ−a > 0; Ψ0;NN (x − y, λ) decrease for Im 1
λ−a < 0; the rest

matrix elements Ψ0;kk(x− y, λ) oscillate. Therefore analytic extensions
are possible for the first and the last columns only:

Ψ(x, λ) =
(

Ψ+
(1)(x, λ), ~Ψ(x, λ),Ψ−(N)(x, λ)

)
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• Consider Φ(x, λ): we have y < x and now the situation is opposite:

Φ(x, λ) =
(

Φ−(1)(x, λ), ~Φ(x, λ),Φ+
(N)(x, λ)

)
Fundamental analytic solutions

Important tools for reducing the ISP to a Riemann-Hilbert problem (RHP)
are the fundamental analytic solution (FAS) χ±(x, t, λ). Their construction is
based on the generalized Gauss decomposition of T (λ, t):

T (t, λ) = S+
J D

+
J T̂
−
J , or T (t, λ) = S−J D

−
J T̂

+
J ,

χ+(x, t, λ) = φ(x, t, λ)T−J (t, λ) = ψ(x, t, λ)S+
J (t, λ)D+

J (λ),

χ−(x, t, λ) = φ(x, t, λ)T+
J (λ) = ψ(x, t, λ)S−J (t, λ)D−J (λ),

where

T+
J (λ, t) =

 1 −~ρ+,T c̃+

0 11 −s0~ρ
+

0 0 1

 , T−J (λ, t) =

 1 0 0
~ρ− 11 0
c̃− −~ρ−,T s0 1

 ,
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~ρ+ =
~b+

m+
1

, ~ρ− =
~B−

m−1
, c̃+ =

1

2
(~ρ+,T s0~ρ

+), c̃− =
1

2
(~ρ−,T s0~ρ

−).

S+
J (λ, t) =

 1 ~τ+,T c̃+

0 11 s0~τ
+

0 0 1

 , S−J (λ, t) =

 1 0 0
−~τ− 11 0
c̃− −~τ−,T s0 1

 ,

~τ+ =
~B−

m+
1

, ~τ− =
~b+

m−1
, c̃+ =

1

2
(~τ+,T s0~τ

+), c̃− =
1

2
(~τ−,T s0~τ

−).

D+
J =

 m+
1 0 0

0 m+
2 0

0 0 1/m+
1

 , D−J =

 1/m−1 0 0
0 m−2 0
0 0 m−1

 ,(2)

where ~τ±(λ, t) = ~b∓/m±1 , ~ρ±(λ, t) = ~b±/m±1 and

m+
2 = T22 +

~b+~b−T

m+
1

, m−2 = T22 +
s0
~b−~b+T s0

m−1
.
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Scattering matrix and its t-dependence

Φ(x, t, λ) = Ψ(x, t, λ)T (t, λ), T (λ, t) =

 m−1
~b−T c−1

− ~B+ T22 s0
~B−

c+1 −~b+T s0 m+
1

 ,

Consider the limit for x→ −∞:

i
∂Φ

∂t
=

V1

λ+ a
Φ(x, t, λ)− Φ(x, t, λ)C(λ) x→ −∞,

⇒ i
∂Ψ0

∂t
=

J

λ+ a
Ψ0(x, λ)−Ψ0(x, λ)C(λ), C(λ) =

J

λ+ a
.

because ∂Ψ0

∂t = 0! Next consider the limit for x→∞ with Φ = ΨT :

⇒ iΨ0(x, λ)
∂T

∂t
=

J

λ+ a
Ψ0(x, λ)T (t, λ)−Ψ0(x, λ)T (t, λ)C(λ).

Finally:

i
∂T

∂t
=

[
J

λ+ a
, T (t, λ)

]
.
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In components we get:

∂m±1 (λ)

∂t
= 0,

∂m±2 (λ)

∂t
= 0, i

∂~b±

∂t
= ∓2~b±(λ, t)

λ+ a
, i

∂ ~B±

∂t
= ∓2 ~B±(λ, t)

λ+ a
,

Thus m−1 (λ) and m+
1 (λ): i) are analytic functions of λ for Imλ < 0 and

Imλ > 0; ii) provide generating functionals of conservation laws for the spinor
models. Usually for other models we use:

lnm−1 (λ) =

∞∑
k=1

Ikλ
−k;

∂Ik
∂t

= 0.

and Ik come out to have densities, which are local in the dynamical variables;
besides Ik are in involution, i.e. the Poisson brackets {Ik, Im} = 0 In this case

we need to check if Ik will be local or nonlocal in ~φ and ~ψ.
Besides we have a whole (N−2)×(N−2) matrixm+

2 (λ) that also generates
integrals of motion. Each matrix element of m+

2 (λ) generates conservation
laws, but in general we can not expect neither local densities, nor vanishing
Poisson brackets between these integrals.
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The FAS for real λ are linearly related

χ+(x, t, λ) = χ−(x, t, λ)GJ(λ, t), G0,J(λ, t) = T̂−J (λ, t)T+
J (λ, t). (3)

Introduce:
ξ±(x, t, λ) = χ±(x, t, λ)Ψ̂0(x, λ).

Then the RHP can be written as:

ξ+(x, t, λ) = ξ−(x, t, λ)GJ(x, t, λ), λ ∈ R,

i
∂GJ
∂x

=
1

λ− a
[J,GJ(x, t, λ)], i

∂GJ
∂t

=
1

λ+ a
[J,GJ(x, t, λ)].

lim
λ→a

ξ±(x, t, λ) = 11. (4)

Obviously the sewing function Gj(x, λ, t) is uniquely determined by the Gauss
factors T±J (λ, t) and

G(x, t, λ) = E−1
0 G0(λ)E0(x, t, λ), E0(x, t, λ) = exp

(
− iJx

λ− a
− iJt

λ+ a

)
.
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Let ξ0(x, t, λ) be a regular solution to RHP. Construct singular solution of
RHP with simple pole singularities at λ+

1 and λ−1 .
First construct singular solutions with canonical normalization at λ =∞.

ξ1(x, t, λ) = u(x, t, λ)ξ0(x, t, λ) and χ±1 (x, t, λ) = u(x, t, λ)χ±0 (x, t, λ),

u(x, t, λ) = 11+(c1(λ)− 1)P1(x, t)+

(
1

c1(λ)
− 1

)
P̄1(x, t), c1(λ) =

λ− λ+
1

λ− λ−1
.

P1(x, t) =
|n1〉〈m1|
〈m1|n1〉

, P̄1(x, t) = S0P
T
1 (x, t)S0 =

|S0m1〉〈n1S0|
〈m1|n1〉

,

Since χ±1 (x, t, λ) and χ±0 (x, t, λ) satisfy the equations:

i
∂χ±1
∂x

=
U1(x, t)

λ− a
χ±1 (x, t, λ),

∂χ±0 (x, t, λ)

∂x
=

J

λ− a
χ±0 (x, t, λ),

Then the dressing factor must satisfy the equation:

i
∂u

∂x
=
U1(x)

λ− a
u(x, t, λ)− u(x, t, λ)

J

λ− a
. (5)
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identically with respect to λ. But u(x, t, λ) is rational function of λ which has
poles and zeroes at λ = λ+

1 and λ = λ−1 . This means that it is enough to
require that the residues of the left hand side of (5) at these points vanish.
From this it follows:

|n1(x, t)〉 = E(x, t, λ+
1 )|n10〉, 〈m1(x, t)| = 〈m10|E−1(x, t, λ−1 ). (6)

In other words the dependence of the projector P1(x, t) is determined by the
eigenfunctions of L with trivial potential U0 = J , since χ±0 (x, t, λ) = E(x, t, λ).

Besides u(x, t, λ) must be an element of the SO(N) group, i.e.

u−1(x, t, λ) = S0u
T (x, t, λ)S0,

which means that the projectors P1 and P̄1(x, t) and the polarization vectors
must satisfy:

P1P̄1(x, t) = P̄1(x, t)P1 = 0, 〈m1|S0|m1〉 = 〈n1|S0|n1〉 = 0.

If we need normalization at λ = a, the we could use:

ξ̃+(x, t, λ) = ξ+(x, t, λ)ξ̂+(x, t, a), ξ̃−(x, t, λ) = ξ−(x, t, λ)ξ̂−(x, t, a).
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ũ(x, t, λ) = u(x, t, λ)û(x, t, a),

ũ(x, t, λ) =

(
11 + (c1(λ)− 1)P1(x, t) +

(
1

c1(λ)
− 1

)
P̄1(x, t)

)
·
(
11 + (c1(a)− 1) P̄1(x, t) +

(
1

c1(a)
− 1

)
P1(x, t)

)
= 11 +

(
c1(λ)

c1(a)
− 1

)
P1(x, t) +

(
c1(a)

c1(λ)
− 1

)
P̄1(x, t).

(7)
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The one soliton solution

Given the sewing function Ψ0(x, λ) for λ ∈ R construct the fundamental ana-
lytic solutions ξ+(x, λ) analytic for λ ∈ C+ and ξ−(x, λ) analytic for λ ∈ C−
such that they satisfy the canonical normalization limλ→∞ ξ−(x, λ) = 11.

Remember: ξ±(x, λ) satisfy the equations:

i
∂ξ±

∂x
=
U1(x)

λ− a
ξ±(x, t, λ)− ξ±(x, t, λ)

J

λ− a
,

i
∂ξ±

∂t
=
V1(x)

λ+ a
ξ±(x, t, λ)− ξ±(x, t, λ)

J

λ+ a
.

(8)

If we find the solution of the Riemann-Hilbert problem, the we can immediately
find also U1(x). Multiply eq. (8) by λ− a and by ξ̂±(x, λ) on the right, then
take the limit λ→ a:

lim
λ→a

: i(λ− a)
∂ξ±

∂x
ξ̂±(x, λ) = U1(x)− ξ±Jξ̂±(x, λ),

0-13



i.e.

U1(x, t) = lim
λ→a

(
ξ±Jξ̂±(x, λ)− i(λ− a)

∂ξ±

∂x
ξ̂±(x, λ)

)
. (9)

Since we started with ξ±(x, t, λ) = u(x, t, λ)ξ±0 and ξ±0 = 11, then

U1(x, t) = u(x, t, a)Jû(x, t, a).

where u(x, t, λ) is the dressing factor, which we constructed above. Similarly:

V1(x, t) = lim
λ→−a

(
ξ±Jξ̂±(x, λ)− i(λ+ a)

∂ξ±

∂x
ξ̂±(x, λ)

)
= u(x, t,−a)Jû(x, t,−a)

(10)

How to calculate ~φ(x, t) and ~ψ(x, t)? Assume we start with the trivial

solution, corresponding to ξ±0 = 11. Then ~φ0 = const , ~ψ0 = const with

(~φ∗0|S0|~ψ0) = 0 and (~φ0|S0|~ψ0) = 0. Then the dressed solutions will be:

~φ(x, t) = u(x, t, a)~φ0, ~ψ(x, t) = u(x, t,−a)~ψ0.

Check it
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λ

◦

◦

λ+
1

λ−1

ξ+(x, λ)

×
a

ξ−(x, λ)
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RHP:

ξ+(x, t, λ) = ξ−(x, t, λ)G(x, t, λ), λ ∈ R, ξ±, G ∈ so(N).

i
∂G

∂x
=

1

λ− a
[J,G(x, t, λ)], i

∂G

∂t
=

1

λ+ a
[J,G(x, t, λ)],

Several versions of getting N-soliton solutions via dressing
method:

• Start with ξ±0 = 11; then construct u1(x, t, λ) and derive ξ±1 = u1(x, t, λ).
Now apply the dressing on ξ±1 , derive u2(x, t, λ) and find
ξ±2 = u2(x, t, λ)u1(x, t, λ). etc, etc.

• Use projectors of higher rank, e.g.:

P (x, t) =

2∑
k,j=1

|nk〉M̂kj〈mj |, Mkj = 〈mj |nk〉, M̂ = M−1.

This provides one-soliton solution with more complicated internal struc-
ture.
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• use more general dressing factors:

u(x, t, λ) = 11 +
N∑
j=1

(
(cj(λ)− 1)Pj +

(
(c−1
j (λ)− 1)P̄j

))
,

Impose constraints:

u(x, t, λ)S0u
T (x, t, λ)S0 = 11,

and

i
∂u

∂x
+
U1(x)

λ− a
u(x, t, λ)− u(x, t, λ)

J

λ− a
= 0.

i
∂u

∂x
+
V1(x)

λ+ a
u(x, t, λ)− u(x, t, λ)

J

λ+ a
= 0.

which must hold identically with respect to λ. This leads to a set of
algebraic equations on Pj(x, t).
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